Volume 43 Issue 2
Jun.  2021
Turn off MathJax
Article Contents

ZHAO Fuhao, HUANG Weian, YONG Rui, FAN Yu, HUANG Haoyong, JIANG Lin, LI Guozhen. Research and application status of geology-engineering integration[J]. Oil Drilling & Production Technology, 2021, 43(2): 131-138 doi:  10.13639/j.odpt.2021.02.001
Citation: ZHAO Fuhao, HUANG Weian, YONG Rui, FAN Yu, HUANG Haoyong, JIANG Lin, LI Guozhen. Research and application status of geology-engineering integration[J]. Oil Drilling & Production Technology, 2021, 43(2): 131-138 doi:  10.13639/j.odpt.2021.02.001

Research and application status of geology-engineering integration

doi: 10.13639/j.odpt.2021.02.001
  • Rev Recd Date: 2021-01-20
  • Available Online: 2021-06-21
  • Publish Date: 2021-06-21
  • More and more practices of oil and gas field exploration and development indicate that geology-engineering integration is the only way to realize the benefit exploration and development of complex oil and gas reservoirs. In this paper, the research and application status of geology-engineering integration technology was summarized and its development process and implementation ideas were analysed. Domestic and foreign application cases were described. In addition, the research directions of geology-engineering integration were pointed out. It is indicated that geology-engineering integration has been practically applied in the North America and China’s Southwest Oil & Gasfield, Zhejiang Oilfield, Tarim Oilfield, Xinjiang Oilfield, Changqing Oilfield, Dagang Oilfield and Jilin Oilfield, and BHGE, Schlumberger and Halliburton have been actively cooperating with each oilfield to provide the services and software platforms for geology-engineering integration. After the implementation of geology-engineering integration in Changning Shale Gas Demonstration Area, the daily gas production is increased by 127%, the drilling rate is increased by 180%, the drilling cycle is shorted by 53.3% and all production performances of development wells exceed the expected indicators. As for domestic geology-engineering integration, it is in urgent to carry out the researches in the following aspects. First, form the unified idea of geology-engineering integration. Second, set up and improve the operation mechanism of geology-engineering integration. Third, strengthen the performance evaluation of geology-engineering integration. Fourth, speed up the technological breakthrough in the geology-engineering integrated development of shale gas. Fifth, strengthen the application of geomechanics in geology-engineering integration. Sixth, train inter-disciplinary talents in the field of geology-engineering integration.
  • [1] 赵文智, 董大忠, 李建忠, 等. 中国页岩气资源潜力及其在天然气未来发展中的地位[J]. 中国工程科学, 2012, 14(7):46-52. doi:  10.3969/j.issn.1009-1742.2012.07.007

    ZHAO Wenzhi, DONG Dazhong, LI Jianzhong, et al. The resource potential and future status in natural gas development of shale gas in China[J]. Engineering Science, 2012, 14(7): 46-52. doi:  10.3969/j.issn.1009-1742.2012.07.007
    [2] 王淑芳, 董大忠, 王玉满, 等. 中美海相页岩气地质特征对比研究[J]. 天然气地球科学, 2015, 26(9):1666-1678. doi:  10.11764/j.issn.1672-1926.2015.09.1666

    WANG Shufang, DONG Dazhong, WANG Yuman, et al. A comparative study of the geological feature of Marine shale gas between China and the United States[J]. Natural Gas Geoscience, 2015, 26(9): 1666-1678. doi:  10.11764/j.issn.1672-1926.2015.09.1666
    [3] HAMMES U, HAMLIN H S, EWING T E. Geologic analysis of the Upper Jurassic Haynesville Shale in East Texas and West Louisiana[J]. AAPG Bulletin, 2011, 95(10): 1643-1666. doi:  10.1306/02141110128
    [4] CIPOLLA C L, FITZPATRICK T, WILLIAMS M J, et al. Seismic-to-simulation for unconventional reservoir development[C]//SPE Reservoir Characterisation and Simulation Conference and Exhibition, October 2011, Abu Dhabi, UAE. DOI: 10.2118/146876-MS.
    [5] GUPTA J K, ZIELONKA M G, ALBERT R A, et al. Integrated methodology for optimizing development of unconventional gas resources[C]//SPE Hydraulic Fracturing Technology Conference, February 2012, The Woodlands, Texas, USA. DOI: 10.2118/152224-MS.
    [6] DOWNIE R, XU J, GRANT D, et al. Utilization of microseismic event source parameters for the calibration of complex hydraulic fracture models[C]//SPE Hydraulic Fracturing Technology Conference, February 2013, The Woodlands, Texas, USA. DOI: 10.2118/163873-MS.
    [7] DOWNIE R, REESE S, AJAYI B. Investigating microseismic responses and interaction between offset hydraulic fracture treatments during horizontal well completions[C]//SPE Eastern Regional Meeting, August 2013, Pittsburgh, Pennsylvania, USA. DOI: 10.2118/165719-MS.
    [8] COHEN C E, ABAD C, WENG X, et al. Analysis on the impact of fracturing treatment design and reservoir properties on production from shale gas reservoirs[C]//International Petroleum Technology Conference, March 2013, Beijing, China. DOI: 10.2523/IPTC-16400-MS.
    [9] COHEN C E, ABAD C, WENG X, et al. Optimum fluid and proppant selection for hydraulic fracturing in shale gas reservoirs: a parametric study based on fracturing-to-production simulations[C]//SPE Hydraulic Fracturing Technology Conference, February 2013, The Woodlands, Texas, USA. DOI: 10.2118/163876-MS.
    [10] RAMANATHAN V, BOSKOVIC D, ZHMODIK A, et al. Back to the future: shale 2.0-returning back to engineering and modelling hydraulic fractures in unconventionals with new seismic to stimulation workflows[C]//SPE/CSUR Unconventional Resources Conference-Canada, September 2014, Calgary, Alberta, Canada. DOI: 10.2118/171662-MS.
    [11] VIRUES C, SHIMAMOTO T, KURODA S. Understanding fracture geometry of the Canadian Horn river shale gas via an unconventional complex fracture propagation model in multi-staged pad with 9 horizontal wells[C]//SPE/CSUR Unconventional Resources Conference October 2015, Calgary, Alberta, Canada, DOI: 10.2118/175933-MS.
    [12] MARONGIU-PORCU M, LEE D, SHAN D, et al. Advanced modeling of interwell fracturing interference: an eagle Ford shale oil study[J]//SPE Annual Technical Conference and Exhibition, September 2015, Houston, Texas, USA. DOI: 10.2118/174902-PA.
    [13] MORALES A, ZHANG K, GAKHAR K, et al. Advanced modeling of interwell fracturing interference: an Eagle Ford shale oil study - refracturing[C]//SPE Hydraulic Fracturing Technology Conference, February 2016, The Woodlands, Texas, USA. DOI: 10.2118/179177-MS.
    [14] 吴奇, 梁兴, 鲜成钢, 等. 地质—工程一体化高效开发中国南方海相页岩气[J]. 中国石油勘探, 2015, 20(4):1-23. doi:  10.3969/j.issn.1672-7703.2015.04.001.

    WU Ji, LIANG Xing, XIAN Chenggang, et al. Geoscience-to-production integration ensures effective and efficient south China marine shale gas development[J]. China Petroleum Exploration, 2015, 20(4): 1-23. doi:  10.3969/j.issn.1672-7703.2015.04.001.
    [15] 胡文瑞. 地质工程一体化是实现复杂油气藏效益勘探开发的必由之路[J]. 中国石油勘探, 2017, 22(1):1-5. doi:  10.3969/j.issn.1672-7703.2017.01.001

    HU Wenrui. Geology-engineering integration-a necessary way to realize profitable exploration and development of complex reservoirs[J]. China Petroleum Exploration, 2017, 22(1): 1-5. doi:  10.3969/j.issn.1672-7703.2017.01.001
    [16] 谢军, 张浩淼, 佘朝毅, 等. 地质工程一体化在长宁国家级页岩气示范区中的实践[J]. 中国石油勘探, 2017, 22(1):21-28. doi:  10.3969/j.issn.1672-7703.2017.01.004

    XIE Jun, ZHANG Haomiao, SHE Chaoyi, et al. Practice of geology-engineering integration in Changning state shale gas demonstration area[J]. China Petroleum Exploration, 2017, 22(1): 21-28. doi:  10.3969/j.issn.1672-7703.2017.01.004
    [17] 刘乃震, 王国勇, 熊小林. 地质工程一体化技术在威远页岩气高效开发中的实践与展望[J]. 中国石油勘探, 2018, 23(2):59-68. doi:  10.3969/j.issn.1672-7703.2018.02.008

    LIU Naizhen, WANG Guoyong, XIONG Xiaolin. Practice and prospect of geology-engineering integration technology in the efficient development of shale gas in Weiyuan block[J]. China Petroleum Exploration, 2018, 23(2): 59-68. doi:  10.3969/j.issn.1672-7703.2018.02.008
    [18] 梁兴, 王高成, 张介辉, 等. 昭通国家级示范区页岩气一体化高效开发模式及实践启示[J]. 中国石油勘探, 2017, 22(1):29-37. doi:  10.3969/j.issn.1672-7703.2017.01.005

    LIANG Xing, WANG Gaocheng, ZHANG Jiehui, et al. High-efficiency integrated shale gas development model of Zhaotong national demonstration zone and its practical Enlightenment[J]. China Petroleum Exploration, 2017, 22(1): 29-37. doi:  10.3969/j.issn.1672-7703.2017.01.005
    [19] 刘涛, 石善志, 郑子君, 等. 地质工程一体化在玛湖凹陷致密砂砾岩水平井开发中的实践[J]. 中国石油勘探, 2018, 23(2):90-103. doi:  10.3969/j.issn.1672-7703.2018.02.012

    LIU Tao, SHI Shanzhi, ZHENG Zijun, et al. Application of geology-engineering integration for developing tight oil in glutenite reservoir by horizontal wells in Mahu sag[J]. China Petroleum Exploration, 2018, 23(2): 90-103. doi:  10.3969/j.issn.1672-7703.2018.02.012
    [20] 章敬, 罗兆, 徐明强, 等. 新疆油田致密油地质工程一体化实践与思考[J]. 中国石油勘探, 2017, 22(1):12-20. doi:  10.3969/j.issn.1672-7703.2017.01.003

    ZHANG Jing, LUO Zhao, XU Mingqiang, et al. Application of geology-engineering integration in development of tight oil in Xinjiang oilfield[J]. China Petroleum Exploration, 2017, 22(1): 12-20. doi:  10.3969/j.issn.1672-7703.2017.01.003
    [21] 张杨, 杨向同, 滕起, 等. 塔里木油田超深高温高压致密气藏地质工程一体化提产实践与认识[J]. 中国石油勘探, 2018, 23(2):43-50. doi:  10.3969/j.issn.1672-7703.2018.02.006

    ZHANG Yang, YANG Xiangtong, TENG Qi, et al. Practice and cognition of geology-engineering integration for the production increasing of HTHP ultra-deep tight gas reservoir in Tarim oilfield[J]. China Petroleum Exploration, 2018, 23(2): 43-50. doi:  10.3969/j.issn.1672-7703.2018.02.006
    [22] 刘乃震, 何凯, 叶成林. 地质工程一体化在苏里格致密气藏开发中的应用[J]. 中国石油勘探, 2017, 21(1):53-60. doi:  10.3969/j.issn.1672-7703.2017.01.008

    LIU Naizhen, HE Kai, YE Chenglin. Application of geology-engineering integration in the development of tight gas reservoir in Sulige Gasfield[J]. China Petroleum Exploration, 2017, 21(1): 53-60. doi:  10.3969/j.issn.1672-7703.2017.01.008
    [23] 姚泾利, 刘晓鹏, 赵会涛, 等. 鄂尔多斯盆地盒8段致密砂岩气藏储层特征及地质工程一体化对策[J]. 中国石油勘探, 2019, 24(2):186-195. doi:  10.3969/j.issn.1672-7703.2019.02.006

    YAO Jingli, LIU Xiaopeng, ZHAO Huitao, et al. Characteristics of he 8th member tight sandstone gas reservoir and solution based on geology-engineering integration in Ordos Basin[J]. China Petroleum Exploration, 2019, 24(2): 186-195. doi:  10.3969/j.issn.1672-7703.2019.02.006
    [24] 赵贤正, 赵平起, 李东平, 等. 地质工程一体化在大港油田勘探开发中探索与实践[J]. 中国石油勘探, 2018, 23(2):6-14. doi:  10.3969/j.issn.1672-7703.2018.02.002

    ZHAO Xianzheng, ZHAO Pingqi, LI Dongping, et al. Research and practice of geology-engineering integration in the exploration and development of Dagang oilfield[J]. China Petroleum Exploration, 2018, 23(2): 6-14. doi:  10.3969/j.issn.1672-7703.2018.02.002
    [25] 许建国, 赵晨旭, 宣高亮, 等. 地质工程一体化新内涵在低渗透油田的实践——以新立油田为例[J]. 中国石油勘探, 2018, 23(2):37-42. doi:  10.3969/j.issn.1672-7703.2018.02.005

    XU Jianguo, ZHAO Chenxu, XUAN Gaoliang, et al. Application of the new connotation of geology-engineering integration in low permeability oilfields: A case study on Xinli oilfield[J]. China Petroleum Exploration, 2018, 23(2): 37-42. doi:  10.3969/j.issn.1672-7703.2018.02.005
    [26] 王峰, 李兴科, 张应安. 地质工程一体化在大平台集约化建井中的实践——以吉林油田新立Ⅲ区块为例[J]. 中国石油勘探, 2017, 22(1):6-11. doi:  10.3969/j.issn.1672-7703.2017.01.002

    WANG Feng, LI Xingke, ZHANG Yingan. Application of geology and engineering integration in the intensive well construction on a large platform: A case study on Xinli Ⅲ block, Jilin Oilfield[J]. China Petroleum Exploration, 2017, 22(1): 6-11. doi:  10.3969/j.issn.1672-7703.2017.01.002
    [27] COHEN C E, KAMAT S, ITIBROUT T, et al. Parametric study on completion design in shale reservoirs based on fracturing-to-production simulations[C]//International Petroleum Technology Conference, January 2014, Doha, Qatar. DOI: 10.2523/IPTC-17462-MS.
    [28] 周祥, 张士诚, 马新仿, 等. 页岩气藏体积压裂水平井产能模拟研究进展[J]. 新疆石油地质, 2015, 36(5):612-619. doi:  10.7657/XJPG20150522

    ZHOU Xiang, ZHANG Shicheng, MA Xinfang, et al. Advances of simulation studies of volumetric fracturing horizontal well productivity for shale gas reservoir[J]. Xinjiang Petroleum Geology, 2015, 36(5): 612-619. doi:  10.7657/XJPG20150522
    [29] MAXWELL S C, WENG X, KRESSE O, et al. Modeling microseismic hydraulic fracture deformation[C]//SPE Annual Technical Conference and Exhibition, September 2013, New Orleans, Louisiana, USA. DOI: 10.2118/166312-MS.
    [30] WENG X, KRESSE O, CHUPRAKOV D, et al. Applying complex fracture model and integrated workflow in unconventional reservoirs[J]. Journal of Petroleum Science and Engineering, 2014, 124: 468-483. doi:  10.1016/j.petrol.2014.09.021
    [31] 鲜成钢. 页岩气地质工程一体化建模及数值模拟: 现状、挑战和机遇[J]. 石油科技论坛, 2018, 37(5):24-34. doi:  10.3969/j.issn.1002-302x.2018.05.005

    XIAN Chenggang. Shale gas geological engineering integrated modeling and numerical simulation: Present conditions, challenges and opportunities[J]. Petroleum Science and Technology Forum, 2018, 37(5): 24-34. doi:  10.3969/j.issn.1002-302x.2018.05.005
    [32] 吴奇, 胡文瑞, 李峋. 地质工程一体化在复杂油气藏效益勘探开发中存在的“异化”现象及思考建议[J]. 中国石油勘探, 2018, 23(2):1-5. doi:  10.3969/j.issn.1672-7703.2018.02.001

    WU Ji, HU Wenrui, LI Xun. The phenomenon of “alienation” of geology-engineering integration in exploration and development of complicated oil and gas reservoirs, and related thoughts and suggestions[J]. China Petroleum Exploration, 2018, 23(2): 1-5. doi:  10.3969/j.issn.1672-7703.2018.02.001
    [33] 刘合, 孟思炜, 苏健, 等. 对中国页岩气压裂工程技术发展和工程管理的思考与建议[J]. 天然气工业, 2019, 39(4):1-7. doi:  10.3787/j.issn.1000-0976.2019.04.001

    LIU Ge, MENG Saihui, SU Jian, et al. Reflections and suggestions on the development and engineering management of shale gas fracturing technology in China[J]. Natural Gas Industry, 2019, 39(4): 1-7. doi:  10.3787/j.issn.1000-0976.2019.04.001
    [34] REXILIUS J. The well factory approach to developing unconventionals: A case study from the Permian Basin Wolfcamp play[C]//SPE/CSUR Unconventional Resources Conference, October 2015, Calgary, Alberta, Canada. DOI: 10.2118/175916-MS.
    [35] 张合文, 崔明月, 张宝瑞, 等. 低渗透薄层难动用边际油藏地质工程一体化技术−以滨里海盆地Zanazour油田为例[J]. 中国石油勘探, 2019, 24(2):203-209. doi:  10.3969/j.issn.1672-7703.2019.02.008

    ZHANG Gewen, CUI Mingyue, ZHANG Baorui, et al. Geology-engineering integration for low-permeability and thin marginal reservoirs: A case study on Zanazour oilfield, Pre-Caspian Basin[J]. China Petroleum Exploration, 2019, 24(2): 203-209. doi:  10.3969/j.issn.1672-7703.2019.02.008
    [36] PARRA P A, RUBIO N, RAMIREZ C, et al. Unconventional reservoir development in Mexico: Lessons learned from the first exploratory wells[C]//SPE Unconventional Resources Conference-USA, April 2013, The Woodlands, Texas, USA. DOI: 10.2118/164545-MS.
    [37] 谢军, 鲜成钢, 吴建发, 等. 长宁国家级页岩气示范区地质工程一体化最优化关键要素实践与认识[J]. 中国石油勘探, 2019, 24(2):174-185. doi:  10.3969/j.issn.1672-7703.2019.02.005

    XIE Jun, XIAN Chenggang, WU Jianfa, et al. Optimal key elements of geoengineering integration in Changning national shale gas demonstration zone[J]. China Petroleum Exploration, 2019, 24(2): 174-185. doi:  10.3969/j.issn.1672-7703.2019.02.005
    [38] 田军, 刘洪涛, 滕学清, 等. 塔里木盆地克拉苏构造带超深复杂气田井全生命周期地质工程一体化实践[J]. 中国石油勘探, 2019, 24(2):165-173. doi:  10.3969/j.issn.1672-7703.2019.02.004

    TIAN Jun, LIU Hongtao, TENG Xueqing, et al. Geology-engineering integration practices throughout well lifecycle in ultra-deep complex gas reservoirs of Kelasu tectonic belt, Tarim Basin[J]. China Petroleum Exploration, 2019, 24(2): 165-173. doi:  10.3969/j.issn.1672-7703.2019.02.004
    [39] 邸伟娜, 闫娜, 叶海超. 国外页岩气钻井液技术新进展[J]. 钻井液与完井液, 2014, 31(6):76-81. doi:  10.3969/j.issn.1001-5620.2014.06.021

    DI Weina, YAN Na, YE Haichao. Latest shale gas drilling technological development[J]. Drilling Fluid & Completion Fluid, 2014, 31(6): 76-81. doi:  10.3969/j.issn.1001-5620.2014.06.021
    [40] 雷群, 管保山, 才博, 等. 储集层改造技术进展及发展方向[J]. 石油勘探与开发, 2019, 46(3):580-587. doi:  10.11698/PED.2019.03.16

    LEI Qun, GUAN Baoshan, CAI Bo, et al. Technological progress and prospects of reservoir stimulation[J]. Petroleum Exploration and Development, 2019, 46(3): 580-587. doi:  10.11698/PED.2019.03.16
    [41] 潘军, 刘卫东, 张金成. 涪陵页岩气田钻井工程技术进展与发展建议[J]. 石油钻探技术, 2018, 46(4):9-15. doi:  10.11911/syztjs.2018119

    PAN Jun, LIU Weidong, ZHANG Jincheng. Drilling technology progress and recommendations for the Fuling shale gas field[J]. Petroleum Drilling Techniques, 2018, 46(4): 9-15. doi:  10.11911/syztjs.2018119
    [42] SUAREZ-RIVERA R, HANDWERGER D, RODRIGUEZ-HERRERA A, et al. Development of a heterogeneous earth model in unconventional reservoirs, for early assessment of reservoir potential[C]//47th US Rock Mechanics/Geomechanics Symposium, June 2013, San Francisco, California.
    [43] RODRIGUEZ-HERRERA A E, SUAREZ-RIVERA R, HANDWERGER D, et al. Field-scale geomechanical characterization of the Haynesville shale[C]//47th US Rock Mechanics/Geomechanics Symposium, June 2013, San Francisco, California.
    [44] SUAREZ-RIVERA R, HERRING S, HANDWERGER D, et al. Integrated analysis of core geology, rock properties, well logs, and seismic data provides a well constrained geologic model of the bossier/haynesville system[C]//SPE Unconventional Resources Conference Canada, November 2013, Calgary, Alberta, Canada. DOI: 10.2118/167204-MS.
    [45] SUAREZ-RIVERA R, DAHI G V, BORGOS H G, et al. Seismic-based heterogeneous earth model improves mapping reservoir quality and completion quality in tight shales[C]//SPE Unconventional Resources Conference-USA, April 2013, The Woodlands, Texas, USA. DOI: 10.2118/164544-MS.
    [46] 鲜成钢, 张介辉, 陈欣, 等. 地质力学在地质工程一体化中的应用[J]. 中国石油勘探, 2017, 22(1):75-88. doi:  10.3969/j.issn.1672-7703.2017.01.010

    XIAN Chenggang, ZHANG Jiehui, CHEN Xin, et al. Application of geomechanics in geology-engineering integration[J]. China Petroleum Exploration, 2017, 22(1): 75-88. doi:  10.3969/j.issn.1672-7703.2017.01.010
    [47] 刘虎, 赵志忠. 塔里木油田勘探开发一体化探索与实践[J]. 管理观察, 2014, 556(29):124-125. doi:  10.3969/j.issn.1674-2877.2014.29.053

    LIU Hu, ZHAO Zhizhong. Exploration and practice of integrated exploration and development in Tarim oilfield[J]. Management Observer, 2014, 556(29): 124-125. doi:  10.3969/j.issn.1674-2877.2014.29.053
    [48] 樊太亮, 李治平, 王红亮, 等. 勘探开发一体化的石油工程专业复合型人才培养模式研究与实践[J]. 中国地质教育, 2009, 18(3):40-42. doi:  10.3969/j.issn.1006-9372.2009.03.015

    FAN Tailiang, LI Zhiping, WANG Hongliang, et al. Research and practice of training model of compound talents in the major of exploration and development of petroleum engineering[J]. Chinese Geological Education, 2009, 18(3): 40-42. doi:  10.3969/j.issn.1006-9372.2009.03.015
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article views(3) PDF downloads(404) Cited by()

Proportional views
Related

Research and application status of geology-engineering integration

doi: 10.13639/j.odpt.2021.02.001

Abstract: More and more practices of oil and gas field exploration and development indicate that geology-engineering integration is the only way to realize the benefit exploration and development of complex oil and gas reservoirs. In this paper, the research and application status of geology-engineering integration technology was summarized and its development process and implementation ideas were analysed. Domestic and foreign application cases were described. In addition, the research directions of geology-engineering integration were pointed out. It is indicated that geology-engineering integration has been practically applied in the North America and China’s Southwest Oil & Gasfield, Zhejiang Oilfield, Tarim Oilfield, Xinjiang Oilfield, Changqing Oilfield, Dagang Oilfield and Jilin Oilfield, and BHGE, Schlumberger and Halliburton have been actively cooperating with each oilfield to provide the services and software platforms for geology-engineering integration. After the implementation of geology-engineering integration in Changning Shale Gas Demonstration Area, the daily gas production is increased by 127%, the drilling rate is increased by 180%, the drilling cycle is shorted by 53.3% and all production performances of development wells exceed the expected indicators. As for domestic geology-engineering integration, it is in urgent to carry out the researches in the following aspects. First, form the unified idea of geology-engineering integration. Second, set up and improve the operation mechanism of geology-engineering integration. Third, strengthen the performance evaluation of geology-engineering integration. Fourth, speed up the technological breakthrough in the geology-engineering integrated development of shale gas. Fifth, strengthen the application of geomechanics in geology-engineering integration. Sixth, train inter-disciplinary talents in the field of geology-engineering integration.

ZHAO Fuhao, HUANG Weian, YONG Rui, FAN Yu, HUANG Haoyong, JIANG Lin, LI Guozhen. Research and application status of geology-engineering integration[J]. Oil Drilling & Production Technology, 2021, 43(2): 131-138 doi:  10.13639/j.odpt.2021.02.001
Citation: ZHAO Fuhao, HUANG Weian, YONG Rui, FAN Yu, HUANG Haoyong, JIANG Lin, LI Guozhen. Research and application status of geology-engineering integration[J]. Oil Drilling & Production Technology, 2021, 43(2): 131-138 doi:  10.13639/j.odpt.2021.02.001
    • 我国的非常规油气资源相当丰富[1],但复杂多变的地面和储层条件给中国的油气勘探带来更多挑战。与美国页岩相比,我国页岩气开发面临地面多山地、地下埋藏深度大、非均质性强、技术要求高、开发成本高等诸多挑战[2-3]。近些年,专家学者们借鉴北美页岩气革命的成功经验,积极地探索新的思路方法,来解决非常规油气藏高效益开发的关键技术难题,地质工程一体化作业模式应运而出。2011年,Cipolla等[4]针对非常规储层开发的挑战首次提出“从地震至模拟”一体化工作流程,无缝整合了从地震数据解释至产能模拟的全过程研究方法。2012—2016年,在对Marcellus、EagleFord等页岩开发时,广泛应用地质工程一体化方法开展方案设计、参数优化等工作[5-13]。国内吴奇等[14](2015)系统地提出了针对中国南方海相页岩气地质工程一体化开发的理念及技术路线,在黄金坝YS108区块率先应用“品质三角形”。胡文瑞[15](2017)对地质工程一体化的概念内涵、实现条件等进行了详细阐述。随后,西南油气田、浙江油气田针对页岩气[16-18],塔里木油气田、新疆油气田、长庆油田针对致密油气[19-23],大港油田针对稠油油藏[24],吉林油田针对低渗透油藏[25-26]广泛开展地质工程一体化应用实践,取得初步成效。另外,BHGE、斯伦贝谢、哈里伯顿等公司都积极与油田合作,提供地质工程一体化服务及软件平台,为非常规储层开发提供技术保障。实践中逐步摸索出独具特点的地质工程一体化技术[27-31]。比如,将测井识别评价技术、“甜点”区域预测及评价、储层预测技术、基于地质目标跟踪的轨迹调整技术等关键技术有机地融合,形成页岩气地质工程一体化导向钻井技术;借鉴北美井工厂模式,结合国内海相页岩特点,逐步形成山地工厂化的钻井压裂施工模式。但随着地质工程一体化的应用与发展,出现了一些“异化”现象[32]。为此笔者通过梳理地质工程一体化的发展历程,对其实现思路进行了总结,剖析了国内外典型应用实例,最终对未来的发展趋势提出了建议。

    • 地质工程一体化是指以提高勘探开发效益为中心,以地质-储层综合研究为基础,通过优化钻完井设计、应用先进技术工艺全方位进行项目管理和组织施工,最大限度提高单井产量、降低成本,从而实现勘探开发效益的最大化。地质工程一体化在各油田的应用模式不尽相同,但在架构上都是组建一体化管理的团队,利用一体化研究平台进行一体化方案设计,形成地质工程一体化的开发方式。

    • 地质工程一体化不再是狭义的地质学科与工程施工,而是涉及地球物理、测井、录井、地质、油藏、钻完井、压裂、压后评估等多学科综合研究工作及施工过程中一系列工程技术应用优化,要求不同学科的人员能够高效地开展合作。首先应成立项目部,制定出一体化工作流程,明确责任分工,形成一体化的管理机构(图1);通过整合专业技术力量组建地质工程一体化团队(图2),统一管理、统一决策;实现项目从启动到实施再到评价的全流程精细管理。刘合等[33]认为北美页岩气革命带来管理水平的进步值得借鉴和思考,页岩气一体化开发工程管理的提升空间仍然很大,油气公司应抓住机遇积极优化工程管理模式,如建立“日费式”的管理模式、甲乙方协同一致的管理机制等。

      Figure 1.  Schematic management organization of Changning Shale Gas Demonstration Area (modified from XIE Jun, et al.[16])

      Figure 2.  Geology-engineering integration team of Petroleum Engineering Research Institute, Tarim Oilfield (modified from ZHANG Yang, et al.[21])

    • 地质工程一体化的多学科、复杂性等特征对技术团队内的数据整合提出了更高的要求。所以,需要应用一个一体化的软件工具(平台),团队可以使用依托于该平台的各种软件,实现多学科协同研究和协同工作。目前较成熟的软件平台有BHGE公司的JewelSuite(图3)、斯伦贝谢的Petrel、哈里伯顿的Landmark,此外还有能新科的GEPM地质工程一体化服务、奥伯特的PEOffice油气生产一体化分析软件等。

      Figure 3.  JewelSuite simulation analysis system of geology-engineering integration (from the Beijing Sunshine GEO-Tech Co. Ltd.)

      BHGE公司将地质建模(JOA)、地质力学建模(GMI)及压裂软件(Meyer)三大软件整合成地质工程一体化研究平台,实现了从地质、油藏研究到钻井、压裂、建模分析等一体化分析研究,得到的地质力学、地质建模等结果用于钻井、压裂方案的优化中,通过现场应用,继续完善地质模型,从而提高对储层的认识。

    • 转变过去的方案设计模式,建立协同运行的新模式(图4)。通过对地下条件、地面条件等综合因素分析,进行结合地震、岩心、测井的综合地质评价,确定“甜点区”。进行井位部署和水平井轨迹设计,建立精细的三维地质模型。针对不同的钻完井工况,优选压裂施工参数,优化压裂方案。进行压后评估,不断更新三维地质模型,形成动态闭环。

      Figure 4.  Transformation of scheme design mode

    • 在北美,为保证非常规资源开发的利润,通常采用“井工厂”或“产业化”的开发方式。Rexilius[34]在文章中介绍了二叠盆地Wolfcamp地层非常规油气井井工厂开发模式的具体应用,通过对Rex油田两个采用不同开发方式的井区进行对比,表明该模式能有效增加开发效益。吴奇等[14]针对南方海相页岩气的特点提出的“品质三角形”(储层品质、钻井品质和完井品质)概念,将页岩气开发地质工程一体化工厂化实施分为两步进行。第一步:先打导眼井、水平评价井,进行品质评价并更新形成品质模型,结合实践经验形成并优化后续井开发方案;第二步:根据形成的开发方案,进行其他井的工厂化作业,并对开发井进行压后评估,借助不断更新的三维地质模型优化方案和指导施工。

    • 地质工程一体化概念提出已近十年,国外的加拿大Montney、美国Eagle Ford和二叠盆地Wlofcamp、墨西哥油田、滨里海盆地Zanazour等区块,国内的长宁、威远、昭通、库车地区、三塘湖等区块,都成功开展实践,产油(气)量、钻遇率都有数倍的提升,施工周期也大大缩减。如Zanazour[35]第1口一体化试验井H8获初期日产油113 t,450 d累计产油2.1×104 t,平均日产油46.7 t;库车地区通过实施地质工程一体化,克拉苏构造整体钻井提速明显,单井增产达3~5倍[21]

    • 墨西哥的页岩气资源在全球排名第四,仅次于中国、美国和阿根廷。此外,已经具备商业化开发这些资源的条件,促使墨西哥石油公司对页岩气进行勘探开发。墨西哥石油公司(PEMEX)勘探的油田位于墨西哥东北部,首要目标地层是上白垩统Eagle Ford地层,其次是侏罗纪的Pimienta地层。其勘探开发面临的主要挑战是:要利用从几口探井收集的信息,评价储量可动用性,并为这些油田的未来开发奠定基础。此外由于干旱原因需要考虑供水等问题。为此,建立了一个包含多学科的团队实施地质工程一体化的工作流程以应对这些挑战,应用该工作流程的4口井表现出良好的潜力。

      一体化工作流程,主要有钻井阶段和完井阶段两大部分。钻井阶段使用岩石物理静态模型来识别潜力层段,地质力学模型(MEM)可用于预测最佳钻井方位角、着陆点和降低钻井风险,实时地质导向用于实现目标窗口内钻进。在完井阶段,以油藏为中心的完井和储层改造软件整合岩石物理和地质力学数据,用于优化完井和增产设计。实施该工作流程分为以下四步:钻前模拟,地质导向和实时监测,完井设计、水力压裂建模与实施,油井性能评估。

      通过多学科整合来正确设计和优化非常规储层页岩井是可行的,所采用的工作流程改进了非常规页岩井的设计、评估和优化。通过实施,对该地区Eagle Ford和Pimienta两个地层的储层性质有了更清晰的认识,同时发现常规裂缝模型在描述水力裂缝时存在局限性,应使用各向异性地质力学模型来正确估计非常规页岩井中的最小水平应力分布[36]

    • 长宁区块形成了一套针对南方海相页岩气的提产增效开发模式,率先进行全页岩气田的数值模拟研究。经探索实践逐步形成六大勘探开发主体技术,为地质工程一体化的实施提供了技术保障。现阶段,该气田平均每口井日产气量24.61×104 m3,与评价期相比提高了127%。在施工效果方面,钻遇率提高1.8倍,套管形变率下降68%,水平段延长53%,钻井周期缩短53.3%,开发井各生产指标都超过了设计指标[16,37]

      威远区块地表多山地丘陵,储层埋深大、非均质性强,存在较大的储层改造难度,采用“一体化、工厂化、效益化”的理念进行开发,施工速度、工程质量均得到很大提升。其中,威202井区经3轮开发,甜点钻遇率由20%增加到80%,产量由11.25×104 m3/d提高到25.95×104 m3/d,实现3500 m以浅页岩气规模效益开发[17]

    • 目前行业内地质工程一体化的开展和推进存在着“异化”现象[32],如:一体化项目“大而全”导致虎头蛇尾、“会议室”一体化现象等,为此,分析认为我国页岩气地质工程一体化急需开展以下方向攻关。

      (1)形成统一的地质工程一体化思想。总结成功实施地质工程一体化区块的经验,建立尝试和推进一体化的信心和激情,牢固树立“地质工程一体化是实现复杂油气藏效益勘探开发的必由之路[15]”的思想认识。

      (2)建立健全地质工程一体化运行机制。改革组织机构,整合勘探、钻井、完井、测井、录井、采油等各专业、各部门人员,形成一体化团队,加强一体化管理,利用一体化平台开展一体化设计,进行一体化施工。塔里木油田[38]形成了“LTTDW”的地质工程一体化运行模式,新疆油田[20]总结出“五个一体化”,昭通页岩气示范区[18]提出IPDP模式。

      (3)强化地质工程一体化考核。以降低开发成本、提高单井效益为目标,制定合理的开发方案及可量化的考核制度,充分调动团队成员的积极性,增强团队的凝聚力,真正发挥“1+1>2”的叠加效应,为地质工程一体化实施做好保障。

      (4)加快页岩气地质工程一体化开发技术突破。由于中美页岩地质特征的差异性,北美页岩气革命很多开发技术并不完全适用国内,但随着页岩气勘探开发的深入开展,科研和施工人员针对中国页岩特点进行了先进的、创新性的尝试,总结形成一些具有实用性和适用性的特色技术。李东杰等[39]总结了页岩气钻井技术的进展,建议我国应抓紧完成页岩钻井核心技术及先进工具的国产化。雷群等[40]阐述了储层改造技术进展,对中国储层改造技术发展提出了建议。涪陵页岩气田[41]采用了适合山地特点的“井工厂”布局及作业模式,长宁页岩气示范区[16]逐渐形成了六大勘探开发主体技术。

      (5)加强地质力学在地质工程一体化中的应用。对储层地质力学规律的准确把握,是保障施工效率和开发效益的重要因素。国外Suarez等[42-45]较早在盆地级别开展从地球物理到地质力学一体化三维建模工作。多尺度(单井、平台、全气田)的地质力学模型与开发、钻井、完井、生产四大工程系统充分结合,广泛应用于优化井区和井位部署、调整井眼轨迹、井壁稳定性分析、压裂优化设计及压裂实时监测、压后评估等工作。今后应加强对地质力学、压裂动态、油藏动态的井间相互作用研究及其与压裂和生产的三者耦合研究[46]

      (6)培养地质工程一体化复合型人才。要加快对地质工程一体化复合型人才的培养[47],掌握多种技能的复合型人才具有更好的职业发展空间和适应性,是未来社会最受欢迎的人才类型之一。2009年,樊太亮等[48]就对目前石油工程专业人才培养模式的适应性进行了系统性分析,提出了石油工程专业进行勘探开发一体化的复合型人才培养模式,经过实施取得较好的效果。2016年,新疆油田与中国石油大学(北京)共同建设油气资源与工程联合研究院及重点实验室,致力于将该平台打造成一个培养地质工程一体化复合人才的摇篮。

    • (1)地质工程一体化作业模式的概念提出及发展始于2011年,是以地质研究为基础来实现勘探开发效益最大化,已成为难动用、非常规油气商业(高效)开发的最优模式。

      (2)实现地质工程一体化要依托于一体化的组织机构(团队、管理、平台),在单井、平台、区块多尺度,分层次、动态化地进行一体化综合研究,通过技术手段获得储层参数,把握甜点分布,构建三维地质模型及三维地质力学模型,并根据现场数据实时更新,为地质工程一体化提供技术基础和保障。

      (3)国内外的油田区块进行了大量的地质工程一体化勘探开发应用,取得了可观的效果,但在实践中也存在一些如会议室“一体化”、项目“大而全”、“学科执念”的“异化”现象。

      (4)我国页岩气地质工程一体化急需攻关方向:①形成统一的地质工程一体化思想;②建立健全地质工程一体化运行机制;③强化地质工程一体化考核;④加快页岩气地质工程一体化开发技术突破;⑤加强地质力学在地质工程一体化中的应用;⑥培养地质工程一体化复合型人才。

Reference (48)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return