-
安岳气田须二气藏埋藏深度2 180 m,原始地层压力33.48 MPa、地层温度78 ℃,为特低孔(平均孔隙度7.71 %)、特低渗(平均渗透率0.29 mD)、中含凝析油(气藏中含量137 g/m3)、岩性圈闭砂岩气藏,储层受沉积微相、成岩相控制,呈“砂包砂”发育赋存,具高含水饱和度特征,砂体非均质性强、横向连续性差。须二段储层类型可分为2大类,即:孔隙型储层和裂缝—孔隙型储层,大部分气井依靠断层才能获产。
-
安岳气田须二气藏工区范围内历次构造运动均以升降运动为主,构造平缓,褶皱不强烈,大断裂不发育,断裂以延伸长度短、断开层位少的小断层为主,呈零星、局部发育。工区范围内共识别出断裂184条,主要呈北西向或近东西向展布,均为逆断层,断开层位少,发育方位在90 °~120 °之间断裂有147条,占78.61 %,断裂方位小于90 °和大于120 °的断裂多为延伸长度小于1 000 m的小型断裂(图 1)。
断裂延伸长度分析表明,工区内主要发育延伸长度小于3 000 m的断裂,有174条,占93 %,56.5 %的断层延伸长度小于1 km(图 2)。主要发育位于须二段上部的小断裂。
图 2 安岳气田须二段断裂延伸长度分布柱状图
Figure 2. Distribution column of propagation length of faults of Xu 2 Member in Anyue Gas Field
根据安岳气田须二气藏断层分布实际情况,按分布位置将断层分为3个模式,位于须二上亚段为断层模式1,位于须二上亚段+下亚段为断层模式2,位于须二上亚段+下亚段+雷口坡组为断层模式3。本文中无断层的气井其断层模式设定为模式0(图 3)。
-
取安岳气田须二气藏岩心,采用物理模拟实验与数值模拟技术相结合的方法,分析了不同含水饱和度、渗透率下,阈压、应力敏感、改造缝与断层对该气藏气井产能的影响,认为改造与断层对气井产能的影响程度较阈压及应力敏感大一个数量级,其中断层影响程度最大(表 1、表 2)。
表 1 不同含水饱和度下各因素对气井产能的影响(k=0.03 mD)
Table 1. Effect of each factor on gas well productivity at different water saturation (k=0.03 mD)
影响因素 相对基础模型产能漂移程度/% SW=40% SW=50% SW=60% 阈值 –3.57 –3.94 –12.8 应力敏感 –37.11 –41.47 –42.12 改造缝长30 m 503.15 462.14 547.76 断层长250 m 638.29 638.51 657.62 表 2 不同渗透率下各因素对气井产能的影响(Sw=50 %)
Table 2. Effect of each factor on gas well productivity at different permeability (Sw=50 %)
影响因素 相对基础模型产能漂移程度/% 0.03 mD 0.06 mD 0.3 mD 阈压 –3.94 –1.54 –0.30 应力敏感 –42.12 –41.82 –39.12 改造缝长30 m 462.14 438.33 323.19 断层长250 m 638.51 7 565.26 12871.49 -
从钻井成功率和测试产量统计分析可以看出,大部分工业气井的产能依靠裂缝获得,且其平均测试产量要远大于无裂缝的孔隙型储层(表 3)。
表 3 安岳气田须二气藏孔隙型储层与裂缝—孔隙型储层勘探成效对比
Table 3. Exploration effectiveness comparison between the fractured-porous reservoir and the porous reservoir of Xu 2 gas reservoir in Anyue Gas Field
储层类型 井数 获工业气井数 获工业气井成功率/% 气井平均测试产量/(104m3·d-1) 裂缝—孔隙型 105 100 95.23 20.23 孔隙型 93 17 18.27 1.46 -
因此,裂缝控制的规模储渗体是该类气藏气井高产、稳产的地质基础;此外,位于气藏AVO有利区(储层厚度大于20 m)也是气井产能较高的原因之一,据此总结气藏高产井模式如表 4所示。
表 4 高产气井模式总结
Table 4. Summary of high-yield gas well pattern
井号 须二上亚段储层参数 测井裂缝 测试结果 是否AVO有利区 厚度/m 孔隙度/% 储能系数 日产气/(104 m3·d-1) 日产油/(t·d-1) 日产水/(m3·d-1) Y-X12 45.0 10.0 4.0 有 92.17 128.64 0 是 Y16-X2 35.0 9.0 3.6 有 42.90 52.17 0 是 Y-H1 25.0 8.6 2.5 有 34.10 见油显示 0 是 Y103 34.6 9.0 3.0 有 20.13 12.60 0 是 -
累计产量(气、油)高低与断层延伸长度具有一定的正相关性,但是断层同样是水体侵入的重要通道,位于同一条断层的气井其累计产量(气、油)的高低与气井测试是否产水具有重要关系,测试即产水井其累计产量(气、油)均较低(表 5)。
表 5 不同断层长度对气井测试和累计产量的影响
Table 5. Effect of fault length on the tested production rate and cumulative production of gas well
断层编号 断层长/km 井号 测试平均日产量 累计产量 气/(104m3·d–1) 油/(t·d–1) 水/(m3·d–1) 气/104m3 油/t 水/m3 1 2.42 Y66-X2 0.97 0 21.60 485.61 231.70 1372.00 Y76-H1 29.22 4.00 0 4 130.53 4 977.18 16 336.40 2 2.23 Y74-H1 43.67 5.70 0 4 867.73 2 934.84 8 415.62 Y86-X1 1.96 0 116.00 38.50 0 457.00 3 4.52 Y45-H1 52.07 14.45 0 5 909.75 3 456.20 10 106.91 Y81-H1 10.63 7.20 0 975.33 696.00 3 170.50 Y81-H2 17.53 0 0 979.15 676.00 839.50 Y73-H2 37.30 0 0 3 406.90 1 988.00 7 325.00 Y80-H1 42.50 2.00 0 2 354.50 2 148.00 2 699.00 4 5.75 Y73-H1 41.20 15.80 0 4 828.52 2 572.00 14 574.20 Y68-X1 13.12 4.32 981.00 未投入生产 5 1.89 Y29-X1 54.14 10.62 0 5 166.60 4 360.00 12 339.00 Y29-H2 1.50 1.00 1.00 991.40 856.00 9 235.00 6 3.44 Y58-X1 5.45 见油 81.79 695.10 952.00 4 242.00 Y53-X2 1.98 24.00 0 1 905.70 7 288.00 14 013.00 7 2.36 Y34-X1 59.92 8.80 0 1 954.6 4 978.00 4 150.00 Y34-X2 16.88 9.72 9.72 637.50 1 423.00 3 056.00 8 1.74 Y65-X1 2.92 见油 6.00 127.90 37.00 0 Y83-H1 4.00 5.00 0 2 030.20 49.00 121.00 -
同一断层由于受力不同,其空间产状不一,断层不同部位井的产能悬殊,断层末梢段裂缝更发育,位于断层末稍端的井测试产量是钻遇断层其他部位井的3倍(表 6)。
表 6 安岳气田须二气藏钻井靶点位于断层末稍与位于其他部位的井产量对比
Table 6. Production rate comparison between the well with the drilling target point of Xu 2 gas reservoir at the end of a fault and the wells located at the other parts of the fault
平面上位于断层末稍的井 平面上位于断层其他部位的井 井号 测试日期 气/(104m3·d–1) 油/(t·d–1) 水/(m3·d–1) 井号 测试日期 气/(104m3·d–1) 油/(t·d–1) 水/(m3·d–1) Y34-X2 2012-6-25 16.88 9.72 2 Y57-X1 2011-1-19 0 0 0 Y34-X1 2012-7-27 59.92 8.80 0 Y29-H2 2012-12-26 6.97 3.51 0 Y29-X1 2013-1-6 54.14 10.62 0 Y81-H1 2013-2-21 10.63 7.20 0 Y73-H2 2013-2-26 37.30 0 0 Y81-H2 2013-1-31 17.53 0 0 Y45-H1 2012-10-3 52.07 14.45 0 Y60 2011-1-17 1.32 0 0 Y103 2009-10-15 20.13 13.74 0 Y53-X2 2011-2-11 1.98 24.00 0 Y76-H1 2012-9-23 29.22 4.00 0 Y7-X2 2011-7-12 33.34 7.01 0 YX12 2010-7-13 92.17 128.64 0 Y73-H1 2013-3-1 41.20 15.80 0 Y71-X2 2012-7-11 22.59 0 0 Y77-H2 2012-11-10 23.18 0 0 Y34-X1 2012-7-27 59.92 8.80 2 Y72-X2 2012-5-25 17.43 7.20 0 Y53-H3 2012-12-21 15.12 4.46 0 Y72-X1 2012-5-23 43.92 12.00 0 Y35-X2 2013-3-10 30.85 18.30 0 Y49-H1 2013-4-20 0.12 0 240 Y34-X2 2012-6-25 16.88 9.72 3 Y26-X1 2012-8-3 0 0 17 Y7-X1 2011-6-10 47.02 14.00 0 Y26-X2 2012-8-3 0.24 0 106 Y74-H1 2012-8-27 43.67 5.70 0 Y29-H2 2012-12-26 6.97 3.51 0 Y67-X2 2012-8-26 25.71 4.80 0 Y78-H1 2012-11-22 4.13 平均 38.90 15.98 平均 13.06 5.73 裂缝的数量与气井初期产能及投产初期产气量存在一定正相关性(图 4)。
图 4 气井初期产能、投产90 d平均气产量与裂缝综合系数关系
Figure 4. The relationships of the initial productivity of gas well and the average gas production rate 90 days after the commissioning vs. composite fracture coefficient
例如Y45-H1、Y81-H1、Y81-H2、Y73-H2井等4口井在同一断层上,位于断层末梢的Y45-H1井和Y73-H2井累计产量明显大于另外2口井(图 5、表 7)。
图 5 安岳气田须二气藏Y45-H1区块断层分布图
Figure 5. Fault distribution of Y45-H1 Block in Xu 2 gas reservoir, Anyue Gas Field
表 7 安岳气田须二气藏Y45-H1区块累计产量
Table 7. Column of single-well production decline rate in different fault distribution patterns
气井 投产日期 累计产气/104m3 累计产水/m3 累计产油/t Y45-H1 2012-12-14 5 909.8 10 107 3 456 Y81-H1 2013-5-30 975.3 2 699 2 148 Y81-H2 2013-5-30 979.2 3 171 696 Y73-H2 2013-5-27 3 406.9 7 325 1 988 -
有断层气井平均年递减率低于无断层气井(表 8),断层长度越长,井控储层范围越广,产能供给充足,产量递减相对较缓(图 6)。
表 8 有无断层井与产量递减情况统计结果
Table 8. Statistics of wells with and without faults and their production decline
分类 总井数 初始月递减率/% 第1年递减率/% 平均年递减率/% 无断层井 4 11.13 57.84 32.02 有断层井 45 22.27 68.16 29.88 -
从不同断层分布模式分析,断层模式3的气井产量平均递减最快,断层模式2的气井产量第1年递减率最快(图 7)。
图 7 不同断层分布模式下的单井产量递减率柱状图
Figure 7. Column of single-well production decline rate in different fault distribution patterns
从不同断层分布模式井控储量统计表中可以看出,从模式0到模式3,井控储量及平均单井井控储量均逐渐增加,表明纵向上随着断层沟通地层层数的增加,井控储量及平均单井产气量也逐渐递增;断层模式1的生产井平均单井产油量最高、产水量最低,断层模式2的生产井产水量最大(表 9)。
表 9 不同断层模式气井开发效果评价
Table 9. Evaluation on the gas well development effectiveness in different fault patterns
断层模式 平均井控储量/108m3 平均单井产气量/104m3 平均单井产油量/t 油折算成气后平均单井产气量/104m3 平均单井产水量/m3 0 0.39 1 739.33 2 133 2 121.71 5 187 1 0.43 1 973.76 4 843 2 842.08 5 009 2 0.55 2 235.26 2 622 2 705.41 6 334 3 0.64 2 986.51 3 326 3 582.81 5 087 合计 0.50 2 233.72 3 231 2 813.00 5 404 根据前述研究,断层模式3为最优断层模式,断层模式1次之,断层模式2再次之,因此井位部署时所布井的断层模式优先考虑顺序依次为模式3、模式1、模式2。
-
(1) 通过对安岳气田须二气藏岩心采用物理模拟与数值模拟技术相结合的方法进行了分析,认为该类气藏改造与断层对气井产能的影响系数较阈压及应力敏感大一个数量级,断层对产能的影响大于气藏改造。
(2) 累计产气、油量与断层延伸长度具有一定的正相关性,但是断层同样是水体侵入的重要通道,同一条断层的气井测试是否产水与累计产量高低具有重要关系。
(3) 同一断层由于受力不同,其空间产状不一,断层不同部位井的产能悬殊,断层末梢段裂缝更发育,位于断层末稍端的井测试产量是钻遇断层其它部位的3倍。
(4) 断层模式3为最优断层模式,断层模式1次之,断层模式2再次之,因此井位部署时所布井的断层模式优先考虑顺序依次为模式3、模式1、模式2,并优先选择断层末端进行布井。
Fault characteristics of water-bearing tight condensate gas reservoirs and their effects on development effectiveness: a case study on the Xu 2 gas reservoir in Anyue Gasfield
-
摘要: 致密凝析气藏储层物性较差,油气水三相渗流导致气相渗透率较低,该类气藏采收率普遍不高于30%。断层既是油气高产的重要条件,也是水侵的重要通道,搞清楚断层特征与该类气藏开发效果的相关性至关重要。安岳气田须二气藏属于低孔、低渗、有水、凝析气藏,储层储集空间以残余原生孔、粒间粒内溶孔为主,局部裂缝较发育,孔渗关系具双重介质特征,单井控制储量低。利用油藏工程理论、岩心物理模拟实验与数值模拟技术相结合的方法研究分析该气藏断层特征,并将断层分布模式进行分类,研究其与单井控制储量、递减率、累计产量以及流体产出特征的关系,认为:同一断层由于受力不同,其空间产状不一,断层不同部位的井产能悬殊,断层末梢段裂缝更发育,位于断层末稍端的井其测试产量是钻遇断层其他部位井产量的3倍;位于须二上亚段为断层模式1,位于须二上亚段+下亚段为断层模式2,位于须二上亚段+下亚段+雷口坡组为断层模式3,井位部署时所布井的断层模式优先考虑顺序依次为模式3、模式1、模式2,并优先选择断层末端进行布井。Abstract: The reservoir physical properties of tight condensate gas reservoirs are poorer and their gas permeability is lower due to oil, gas and water flow. The recovery factor of tight condensate gas reservoirs is generally lower than 30%. A Fault is the important condition for the high yield of oil and gas, and also the important pathways for water invasion, so it is crucial to figure out the correlation between the characteristics of faults and the development effectiveness of tight condensate gas reservoirs. The gas reservoir of Xu 2 Member in Anyue Gas Field is a water-bearing condensate gas reservoir of low porosity and low permeability. Its reservoir space is mainly acted by residual primary pores and intergranular and intragranular dissolved pores, and fractures are relatively development locally. Their porosity-permeability relationship presents the feature of dual media. Single-well controlled reserve is less. In this paper, the fault characteristics of tight condensate gas reservoirs were analyzed by using the combined method of reservoir engineering theory, core physical simulation experiment and numerical simulation technology. Then, the distribution patterns of faults were classified and their relationships with single-well controlled reserve, decline rate, cumulative production and fluid production characteristics were studied. It is indicated that as for the same fault, its force is different, so its spatial occurrence is different, and the well productivity at different positions of the fault varies greatly. Fractures are more developed at the end of a fault, so the oil production rate of the well located at the end of a fault is 3 times that of the wells drilling the other parts of the fault. In addition, it is fault pattern I in the Upper Submember of Xu 2, fault pattern 2 in the Upper Submember + Lower Submember of Xu 2 Member and fault pattern 3 in the Upper Submember + Lower Submember of Xu 2 Member + Leikoupo Formation. The priority of fault pattern during well arrangement shall be fault pattern 3, 1 and 2, and the end of a fault is the preferred location for well arrangement.
-
表 1 不同含水饱和度下各因素对气井产能的影响(k=0.03 mD)
Table 1. Effect of each factor on gas well productivity at different water saturation (k=0.03 mD)
影响因素 相对基础模型产能漂移程度/% SW=40% SW=50% SW=60% 阈值 –3.57 –3.94 –12.8 应力敏感 –37.11 –41.47 –42.12 改造缝长30 m 503.15 462.14 547.76 断层长250 m 638.29 638.51 657.62 表 2 不同渗透率下各因素对气井产能的影响(Sw=50 %)
Table 2. Effect of each factor on gas well productivity at different permeability (Sw=50 %)
影响因素 相对基础模型产能漂移程度/% 0.03 mD 0.06 mD 0.3 mD 阈压 –3.94 –1.54 –0.30 应力敏感 –42.12 –41.82 –39.12 改造缝长30 m 462.14 438.33 323.19 断层长250 m 638.51 7 565.26 12871.49 表 3 安岳气田须二气藏孔隙型储层与裂缝—孔隙型储层勘探成效对比
Table 3. Exploration effectiveness comparison between the fractured-porous reservoir and the porous reservoir of Xu 2 gas reservoir in Anyue Gas Field
储层类型 井数 获工业气井数 获工业气井成功率/% 气井平均测试产量/(104m3·d-1) 裂缝—孔隙型 105 100 95.23 20.23 孔隙型 93 17 18.27 1.46 表 4 高产气井模式总结
Table 4. Summary of high-yield gas well pattern
井号 须二上亚段储层参数 测井裂缝 测试结果 是否AVO有利区 厚度/m 孔隙度/% 储能系数 日产气/(104 m3·d-1) 日产油/(t·d-1) 日产水/(m3·d-1) Y-X12 45.0 10.0 4.0 有 92.17 128.64 0 是 Y16-X2 35.0 9.0 3.6 有 42.90 52.17 0 是 Y-H1 25.0 8.6 2.5 有 34.10 见油显示 0 是 Y103 34.6 9.0 3.0 有 20.13 12.60 0 是 表 5 不同断层长度对气井测试和累计产量的影响
Table 5. Effect of fault length on the tested production rate and cumulative production of gas well
断层编号 断层长/km 井号 测试平均日产量 累计产量 气/(104m3·d–1) 油/(t·d–1) 水/(m3·d–1) 气/104m3 油/t 水/m3 1 2.42 Y66-X2 0.97 0 21.60 485.61 231.70 1372.00 Y76-H1 29.22 4.00 0 4 130.53 4 977.18 16 336.40 2 2.23 Y74-H1 43.67 5.70 0 4 867.73 2 934.84 8 415.62 Y86-X1 1.96 0 116.00 38.50 0 457.00 3 4.52 Y45-H1 52.07 14.45 0 5 909.75 3 456.20 10 106.91 Y81-H1 10.63 7.20 0 975.33 696.00 3 170.50 Y81-H2 17.53 0 0 979.15 676.00 839.50 Y73-H2 37.30 0 0 3 406.90 1 988.00 7 325.00 Y80-H1 42.50 2.00 0 2 354.50 2 148.00 2 699.00 4 5.75 Y73-H1 41.20 15.80 0 4 828.52 2 572.00 14 574.20 Y68-X1 13.12 4.32 981.00 未投入生产 5 1.89 Y29-X1 54.14 10.62 0 5 166.60 4 360.00 12 339.00 Y29-H2 1.50 1.00 1.00 991.40 856.00 9 235.00 6 3.44 Y58-X1 5.45 见油 81.79 695.10 952.00 4 242.00 Y53-X2 1.98 24.00 0 1 905.70 7 288.00 14 013.00 7 2.36 Y34-X1 59.92 8.80 0 1 954.6 4 978.00 4 150.00 Y34-X2 16.88 9.72 9.72 637.50 1 423.00 3 056.00 8 1.74 Y65-X1 2.92 见油 6.00 127.90 37.00 0 Y83-H1 4.00 5.00 0 2 030.20 49.00 121.00 表 6 安岳气田须二气藏钻井靶点位于断层末稍与位于其他部位的井产量对比
Table 6. Production rate comparison between the well with the drilling target point of Xu 2 gas reservoir at the end of a fault and the wells located at the other parts of the fault
平面上位于断层末稍的井 平面上位于断层其他部位的井 井号 测试日期 气/(104m3·d–1) 油/(t·d–1) 水/(m3·d–1) 井号 测试日期 气/(104m3·d–1) 油/(t·d–1) 水/(m3·d–1) Y34-X2 2012-6-25 16.88 9.72 2 Y57-X1 2011-1-19 0 0 0 Y34-X1 2012-7-27 59.92 8.80 0 Y29-H2 2012-12-26 6.97 3.51 0 Y29-X1 2013-1-6 54.14 10.62 0 Y81-H1 2013-2-21 10.63 7.20 0 Y73-H2 2013-2-26 37.30 0 0 Y81-H2 2013-1-31 17.53 0 0 Y45-H1 2012-10-3 52.07 14.45 0 Y60 2011-1-17 1.32 0 0 Y103 2009-10-15 20.13 13.74 0 Y53-X2 2011-2-11 1.98 24.00 0 Y76-H1 2012-9-23 29.22 4.00 0 Y7-X2 2011-7-12 33.34 7.01 0 YX12 2010-7-13 92.17 128.64 0 Y73-H1 2013-3-1 41.20 15.80 0 Y71-X2 2012-7-11 22.59 0 0 Y77-H2 2012-11-10 23.18 0 0 Y34-X1 2012-7-27 59.92 8.80 2 Y72-X2 2012-5-25 17.43 7.20 0 Y53-H3 2012-12-21 15.12 4.46 0 Y72-X1 2012-5-23 43.92 12.00 0 Y35-X2 2013-3-10 30.85 18.30 0 Y49-H1 2013-4-20 0.12 0 240 Y34-X2 2012-6-25 16.88 9.72 3 Y26-X1 2012-8-3 0 0 17 Y7-X1 2011-6-10 47.02 14.00 0 Y26-X2 2012-8-3 0.24 0 106 Y74-H1 2012-8-27 43.67 5.70 0 Y29-H2 2012-12-26 6.97 3.51 0 Y67-X2 2012-8-26 25.71 4.80 0 Y78-H1 2012-11-22 4.13 平均 38.90 15.98 平均 13.06 5.73 表 7 安岳气田须二气藏Y45-H1区块累计产量
Table 7. Column of single-well production decline rate in different fault distribution patterns
气井 投产日期 累计产气/104m3 累计产水/m3 累计产油/t Y45-H1 2012-12-14 5 909.8 10 107 3 456 Y81-H1 2013-5-30 975.3 2 699 2 148 Y81-H2 2013-5-30 979.2 3 171 696 Y73-H2 2013-5-27 3 406.9 7 325 1 988 表 8 有无断层井与产量递减情况统计结果
Table 8. Statistics of wells with and without faults and their production decline
分类 总井数 初始月递减率/% 第1年递减率/% 平均年递减率/% 无断层井 4 11.13 57.84 32.02 有断层井 45 22.27 68.16 29.88 表 9 不同断层模式气井开发效果评价
Table 9. Evaluation on the gas well development effectiveness in different fault patterns
断层模式 平均井控储量/108m3 平均单井产气量/104m3 平均单井产油量/t 油折算成气后平均单井产气量/104m3 平均单井产水量/m3 0 0.39 1 739.33 2 133 2 121.71 5 187 1 0.43 1 973.76 4 843 2 842.08 5 009 2 0.55 2 235.26 2 622 2 705.41 6 334 3 0.64 2 986.51 3 326 3 582.81 5 087 合计 0.50 2 233.72 3 231 2 813.00 5 404 -
[1] 黄小琼, 张连进, 郑伟, 向小辉, 王刚.安岳地区上三叠统须二上亚段致密砂岩气藏气井产能控制因素[J].开发工程, 2012, 32(3):65-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201203015 Huang Xiaoqiong, Zhang Lianjin, Zheng Wei 1, Xiang Xiaohui, Wang Gang. Controlling factors of gas well deliverability in the tight sand gas reservoirs of the upper submember of the second member of the upper Triassic Xujiahe Formation in the Anyue area, Sichuan Basin[J]. Natural Gas Industry, 2012, 32(3): 65-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201203015 [2] 杨柳, 徐伟, 杨洪志.高含水致密砂岩气藏天然气富集模式及有利区评价—以安岳气田须二段气藏为例[J].天然气勘探与开发, 2016, 39(3):16-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqktykf201603004 YANG Liu, XU Wei, YANG Hongzhi. Accumulation pattern of tight sandstone gas reservoir with high water cut and evaluation of favorable area: An example from Xujiahe 2 gas reservoir, Anyue gasfield [J]. Natural Gas Exploration and Development, 2016, 39(3): 16-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqktykf201603004 [3] 王乐之, 李银花.低渗断块砂岩气藏断层封闭性研究及开发对策[J].中国矿业, 2012, 21(11):80-83. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgky201211020 WANG Lezhi, LI Yinhua. Fault seal ability research and development countermeasures in low permeability sandstone reservoir[J]. China Mining Magazine, 2012, 21(11): 80-83 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgky201211020 [4] 樊晓东, 李忠权, 贾红兵, 包志晶.反向正断层对油田开发布井的影响[J].特种油气藏, 2016, 23(5):93-95. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tzyqc201605022 Fan Xiaodong, Li Zhongquan, Jia Hongbing, Bao Zhijing. Effect of antithetic normal fault on oilfield well placement [J]. Special Oil & Gas Reservoirs, 2016, 23(5): 93-95 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tzyqc201605022 [5] 赵俊兴, 邹敏, 胡友清, 朱广社, 伍宏远, 李凤杰, 邵晓岩.姬源西北部长8油层组断层特征及对油藏的影响石油工业[J].成都理工大学学报自然科学版, 2014, 41(3):257-265. http://www.cnki.com.cn/Article/CJFDTotal-CDLG201403001.htm ZHAO Junxing, ZOU Min, HU Youqing, ZHU Guangshe, WU Hong yuan, LI Fengjie, SHAO Xiaoyan. Fault characteristics of Chang-8 oil formation and their impact on reservoir in northwest of Jiyuan, Ordos Basin, China[J]. Journal of Chengdu University of TechnologyScience & Technology Edition, 2014, 41(3): 257-265 http://www.cnki.com.cn/Article/CJFDTotal-CDLG201403001.htm [6] 周家雄, 刘巍.乐东气田断层分布特征及其对产能的影响[J].天然气工业, 2013, 33(11):56-61. http://www.cnki.com.cn/Article/CJFDTotal-TRQG201311010.htm Zhou Jiaxiong; Liu Wei. Fault distribution characteristics and their impacts on the yield of the Ledong Gas 15-1 Field, Yinggehai Basin[J]. Natural Gas Industry, 2013, 33(11): 56-61 http://www.cnki.com.cn/Article/CJFDTotal-TRQG201311010.htm [7] 杨清立, 王一飞.利用水平井挖潜断层附近剩余油方法研究[J].长江大学学报, 2012, 21(11):57-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjdxxb-rkxb201523014 Yang Qingli, Wang Yifei. Production of remaining oil nearby fault with horizontal well[J]. Journal of Yangtze UniversityNatural Science Edition, 2012, 21(11): 57-60 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjdxxb-rkxb201523014 [8] 吴琼.新立油田断层附近高效调整井部署方式研究[J].特种油气藏, 2012, 19(4):73-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tzyqc201204018 WU Qiong. Research on placement of efficient adjustment wells near faults in Xinli oilfield[J]. Special Oil & Gas Reservoirs, 2012, 19(4): 73-76 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tzyqc201204018 -