国外页岩气井人工举升增产技术研究现状与进展

叶长青 马辉运 蔡道纲 高翔 杨振周 刘青

叶长青,马辉运,蔡道纲,高翔,杨振周,刘青. 国外页岩气井人工举升增产技术研究现状与进展[J]. 石油钻采工艺,2022,44(3):1-8
引用本文: 叶长青,马辉运,蔡道纲,高翔,杨振周,刘青. 国外页岩气井人工举升增产技术研究现状与进展[J]. 石油钻采工艺,2022,44(3):1-8
YE Changqing, MA Huiyun, CAI Daogang, GAO Xiang, YANG Zhenzhou, LIU Qing. Research status and progress of artificial lifting of shale gas wells abroad[J]. Oil Drilling & Production Technology, 2022, 44(3): 1-8
Citation: YE Changqing, MA Huiyun, CAI Daogang, GAO Xiang, YANG Zhenzhou, LIU Qing. Research status and progress of artificial lifting of shale gas wells abroad[J]. Oil Drilling & Production Technology, 2022, 44(3): 1-8

国外页岩气井人工举升增产技术研究现状与进展

基金项目: 中国石油天然气集团有限公司重大现场试验项目“深层页岩气有效开采关键技术攻关与试验”(编号:2019F-31)
详细信息
    作者简介:

    叶长青(1976-),2007年毕业于西南石油大学油气田开发专业,硕士,现从事排水采气技术研究工作。通讯地址:(610017)四川省成都市小关庙后街23号。E-mail:y_cq@petrochina.com.cn

    通讯作者:

    高翔(1984-),2015年毕业于西南石油大学油气田开发专业,硕士,现从事井下作业与采油工艺研究工作。通讯地址:(102206)北京市昌平区黄河街5号院1号楼。E-mail: gaoxiang_gcy@sina.com

  • 中图分类号: TE37;TE355

Research status and progress of artificial lifting of shale gas wells abroad

  • 摘要: 压裂后产量快速降低是页岩气井生产的典型特征,不施加干预措施很难实现经济开发。为页岩气井优选合理的人工举升工艺,排出井筒积液,稳定页岩气井产量,提高单井可采储量,是页岩气藏高效开发的核心工作之一。调研了常规人工举升工艺在北美页岩气产区的应用情况,分析了各项技术应用的限制因素和存在的不足;针对页岩气井寿命周期内的压裂液返排、处理段塞流、前期及后期生产特征,总结出了页岩气井不同生产阶段人工举升工艺的优选方案,并阐述了应考虑的影响因素和注意事项;最后,介绍了两种页岩气井增压增产新技术的工艺原理和应用效果。该研究可以为国内页岩气田的经济高效开发提供借鉴。
  • 图  1  射流泵示意图[9]

    Figure  1.  Schematic diagram of the jet pump [9]

    图  2  SCS系统结构与安装方式示意图

    Figure  2.  Schematic diagram of the structure and installation of the SCS system

    图  3  SCS 井下压缩机示意图

    Figure  3.  Schematic diagram of the SCS downhole compressor

    图  4  MPP结构剖视和流体流动方向示意图

    Figure  4.  Section view of MPP

    图  5  多相地面射流泵(MPSJP)系统结构

    Figure  5.  Structure of MPSJP system (WELLCOM)

    表  1  常规人工举升工艺的不足与应用限制

    Table  1.   Disadvantages and application constraints of conventional artificial lifting techniques

    工艺不足与应用限制
    电潜泵 (1)受电潜泵尺寸限制,目前主要用在Ø177.8 mm和Ø139.7 mm套管中;(2)价格昂贵;(3)耗能高;(4)低产井散热差,检泵周期短;(5)下入、安装及维修需要钻机起下油管,停机时间长,故障维修成本高;(6)泵效率随含气量增加而快速降低;(7)泵寿命受产出流体中固相影响明显
    射流泵 (1)地面高压供液设备占地面积大,耗能高,系统效率仅为10%~30%;(2)射流泵排液对回压敏感,结构设计难度大,浸没度一般不低于10%;(3)当泵排量超过额定负荷、浸没度较低或地层产出流体游离气体较高时,会产生“气穴”现象;(4)射流泵腔室结垢会严重影响性能,且处理困难
    气举 (1)能量利用效率较低,仅为10%~30%;(2)阀门控制依赖于压力,若固定孔口尺寸,最大流速受限,作业窗口窄,调整成本高;(3)气举阀受井下压力、温度、振动影响,易损坏
    柱塞气举 (1)如果柱塞在深层、高压、高产页岩气井长垂直段上升速度过快,可能会损坏地面设备;(2)对柱塞运行效率、携液规律及边界有效性仍需深入研究[23-26];(3)柱塞下入深度受井斜限制,在低压水平井中,若卡定器下深距储层距离大,则无法有效排出井底积液,释放低压气层产能
    有杆泵 (1)作业深度受抽油杆强度限制,泵内部运动部件的摩擦及抽油杆在弯曲井段的偏磨会进一步削弱其服役能力;(2)高气液比工况下泵效低;(3)结蜡、结垢及内部腐蚀等问题的有效处理手段较少
    下载: 导出CSV

    表  2  人工举升工艺优选需要考虑的因素

    Table  2.   Considerations for optimization of artificial lifting

    项目因素
    油井参数深度、弯曲度、管柱
    生产条件排量、产量下降率、气油比、采出流体含水率
    流体性质密度、黏度、产出固相、流体规模
    储层参数压力、温度、数据采集要求、产能
    地面设施电网、天然气价值、管道要求、容量约束
    盈利能力使用寿命、投资、运营支出、生产延期
    供应商因素使用价值、易于维护、获取备件、员工经验
    HSE考虑因素噪声水平、二氧化碳排放、井完整性、员工能力
    下载: 导出CSV

    表  3  人工举升工艺筛选参考参数

    Table  3.   Reference parameters for selecting artificial lifting techniques

    参数气举泡排柱塞有杆泵电潜泵喷射泵
    最大下深/m5 4866 7065 7914 8774 5726 096
    日处理井筒流体
    最大体积/(m3·d−1)
    11 90080329549 5391 272
    耐温/℃232204288288250288
    腐蚀处理卓越极好极好卓越极好
    气体处理极好极好极好比较好一般
    固体处理一般比较好含砂量不大于40 mg/L
    API密度指数>15>8>15>8≥6
    维修设备钻机或
    修井机
    井口捕捉器
    或钢丝绳
    钻机或
    牵引装置
    钻机钢丝绳或
    水力泵
    动力或能量压缩机井自然能量天然气或电力电力天然气
    或电力
    系统效率/%10~3045~6035~6010~30
    下载: 导出CSV
  • [1] OYEWOLE P, BOPCO L. Artificial lift selection strategy to maximize unconventional oil and gas assets value[C]// Paper presented at the SPE North America Artificial Lift Conference and Exhibition, October 2016, The Woodlands, Texas, USA: SPE-181233-MS. DOI:  10.2118/181233-MS..
    [2] WIGWE M E, WATSON M C, GIUSSANI A, et al. Application of geographically weighted regression to model the effect of completion parameters on oil production-case study on unconventional wells[C]// Paper presented at the SPE Nigeria Annual International Conference and Exhibition, August 2019, Lagos, Nigeria: SPE-198847-MS. DOI: 10.2118/198847-MS.
    [3] ONDECK A, DROUVEN M, BLANDINO N, et al. Multi-operational planning of shale gas pad development[J]. Computers & Chemical Engineering, 2019, 126: 83-101. doi:  10.1016/j.compchemeng.2019.03.035
    [4] KAISARE N, GUPTA A, KARIWALA V, et al. Control and optimization challenges in liquid-loaded shale gas Wells[J]. Control and optimization challenges in liquid-loaded shale gas Wells[J]. IFAC Proc., 2013, 46(32): 227-232. doi:  10.3182/20131218-3-IN-2045.00188
    [5] PARK H Y, FALCONE G, TEODORIU C. Decision matrix for liquid loading in gas wells for cost/benefit analyses of lifting options[J]. Journal of Natural Gas Science and Engineering, 2009, 1(3): 72-83. doi:  10.1016/j.jngse.2009.03.009
    [6] JOSEPH A, SAND C M, AJIENKA A. Classification and management of liquid loading in gas wells[C]//Paper presented at the SPE Nigeria Annual International Conference and Exhibition, August 2013, Lagos, Nigeria: SPE-167603-MS. DOI:  10.2118/167603-MS.
    [7] TAKACS G. Electrical submersible pumps manual[M]. Amsterdam Boston: Gulf Professional Pub/ Elsevier, 2009.
    [8] KUTLUEV D, DRAVO E Q, JASIM A. A 24/7 surveillance service improves ESP uptime in US unconventional reservoirs: A case study[C]//Paper presented at the SPE Middle East Artificial Lift Conference and Exhibition, November 2018, Manama, Bahrain: SPE-192512-MS. DOI:  10.2118/192512-MS.
    [9] ASFORA L, DOS SANTOS A, DE JESUS NOGUEIRA DUARTE L. Modeling multiphase jet pumps for gas compression[J]. Journal of Petroleum Science and Engineering, 2019, 173: 844-852. doi:  10.1016/j.petrol.2018.10.036
    [10] KURKJIAN A L. Optimizing jet-pump production in the presence of gas[J]. SPE Production & Operations, 2018, 34(2): 373-384. doi:  10.2118/191382-PA
    [11] LANE W, CHOKSHI R. Considerations for optimizing artificial lift in unconventionals[C]// Paper presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, August 2014, Denver, Colorado, USA: URTeC-1921823-MS. DOI:  10.15530/URTEC-2014-1921823.
    [12] PINO O A, PUGH T S, HUBBASD J. Gas lift-jet pump hybrid completion reduces nonproductive time during unconventional well production[C]//Paper presented at the SPE Argentina Exploration and Production of Unconventional Resources Symposium, June 2016, Buenos Aires, Argentina: SPE-180958-MS. DOI:  10.2118/180958-MS.
    [13] NGUYEN K, ZHANG M, GARCEZ J, et al. Multiphase transient analysis of flowback and early production data of unconventional gas wells[C]//Paper presented at the SPE Annual Technical Conference and Exhibition, October 2020, Virtual: SPE-201303-MS. DOI:  10.2118/201303-MS.
    [14] FATHI E, MOHAMED S, MEHDI S H. Enhanced gas lift valve performance for sharp edged seat using larger ball sizes[J]. Oil & Gas Research, 2017, 3(2): 1000143. doi:  10.4172/2472-0518.1000143
    [15] ELMER W G, ELMER S J, ELMER T E. New single-well standalone gas lift process facilitates barnett shale fracture-treatment flowback[J]. SPE Production & Operations, 2010, 25(1): 59-64. doi:  10.2118/118876-PA
    [16] KRAVITS M, FREAR R, BORDWELL D, et al. Analysis of plunger lift applications in the marcellus shale[C]//Paper presented at the SPE Annual Technical Conference and Exhibition, October 2011, Denver, Colorado, USA: SPE-147225-MS. DOI:  10.2118/147225-MS.
    [17] HASSOUNA M. Plunger lift applications: Challenges and economics[C]//Paper presented at the North Africa Technical Conference and Exhibition, April 2013, Cairo, Egypt: SPE 164599. DOI:  10.2118/164599-MS.
    [18] BARROS J L. ALVAREZ CLARAMUNT J I, FERRIGNO E. Novel approach in digital diagnostic for plunger lift in unconventional wells at Vaca muerta[C]//Paper presented at the SPE Artificial Lift Conference and Exhibition - Americas, August 2018, The Woodlands, Texas, USA: SPE-19093-MS:DOI:  10.2118/190930-MS.
    [19] BURNS M. Plunger-assisted gas lift and gas-assisted plunger lift[C]// Paper presented at the SPE Artificial Lift Conference and Exhibition - Americas, August 2018, The Woodlands, Texas, USA: SPE-190937-MS. DOI:  10.2118/190937-MS.
    [20] KOLAWOLE O, GAMADI T D, BULLARD D. Artificial lift system applications in tight formations: The state of knowledge[J]. SPE Production & Operations, 2020, 35(2): 422-434. doi:  10.2118/196592-PA
    [21] ALLISON A P, LEAL C F, BOLAND M R. Solving gas interference issues with sucker rod pumps in the permian basin[C]//Paper presented at the SPE Artificial Lift Conference and Exhibition - Americas, August 2018, The Woodlands, Texas, USA: SPE-190936-MS. DOI:  10.2118/190936-MS.
    [22] PANKAJ P, PATRON K E, H L U. Artificial lift selection and its applications for deep horizontal wells in unconventional reservoirs[C]//Paper presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, July 2018, Houston, Texas, USA: URTEC-2875180-MS. DOI 10.15530/URTEC-2018-2875180.
    [23] TEMIZEL C, BALAJI K, CANBAZ C H, et al. Data-driven analysis of natural gas EOR in unconventional shale oils[C]//Paper presented at the SPE Oklahoma City Oil and Gas Symposium, April 2019, Oklahoma City, Oklahoma, USA: SPE-195194-MS. DOI:  10.2118/195194-MS.
    [24] TEMIZEL C, CANBAZ C H, PALABIYIK Y, et al. A comprehensive review of smart/intelligent oilfield technologies and applications in the oil and gas industry[C]//Paper presented at the SPE Middle East Oil and Gas Show and Conference, March 2019, Manama, Bahrain: SPE-195095-MS. DOI:  10.2118/195095-MS.
    [25] TEMIZEL C, CANBAZ C H, TRAN M, et al. A comprehensive review heavy oil reservoirs, latest techniques, discoveries, technologies and applications in the oil and gas industry[C]// Paper presented at the SPE International Heavy Oil Conference and Exhibition, December 2018, Kuwait City, Kuwait. : SPE-193646-MS. DOI:  10.2118/193646-MS.
    [26] OUNSAKUL T, SIRIRATTANACHATCHAWAN T, PATTARACHUPONG W, et al. Artificial lift selection using machine learning[C]//Paper presented at the International Petroleum Technology Conference, March 2019, Beijing, China: IPTC-19423-MS. DOI:  10.2523/IPTC-19423-MS.
    [27] ZEIN EI DIN SHOUKRY A, SOLTYS T W, BETTENSON J, et al. First successful installation of progressing cavity pump system in an oil well at the Kingdom of Saudi Arabia[C]//Paper presented at the International Petroleum Technology Conference, January 2020, Dhahran, Kingdom of Saudi Arabia IPTC-19774-Abstract. DOI:  10.2523/IPTC-19774-Abstract.
    [28] BIDDICK D, NADER L. Subsurface compression lifts liquids, increases gas production in unconventional well trial[J]. Journal of Petroleum Technology, 2020, 72(4): 34-37. doi:  10.2118/0420-0034-JPT
    [29] NADER L, BIDDICK D, ARTINIAN H, et al. Liquid removal to improve gas production and recoverable reserves in unconventional liquid-rich reservoirs by subsurface wet gas compression[C]//Paper presented at the SPE Artificial Lift Conference and Exhibition - Americas, November 2020, Virtual: SPE-201138-MS. DOI:  10.2118/201138-MS.
    [30] AISHMAKHY A, SHOKRY A F, BEG N A, et al. Multiphase flow boosting without using a mechanical multiphase pump–use of innovative surface mounted technology for boosting production from inactive multiphase wells[C]//Paper presented at the Abu Dhabi International Petroleum Exhibition & Conference, November 2021, Abu Dhabi, UAE: SPE-207640-MS. DOI:  10.2118/207640-MS.
    [31] SUMARYANTO, LUKMAN A, KONTHA I N, et al. Optimizing well productivity and maximizing recovery from a mature gas field: The application of wellhead compressor technology[C]//Paper presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition, October 2010, Brisbane, Queensland, Australia: SPE-132855. DOI:  10.2118/132855-MS.
    [32] GRANADO L E, DRAGO A, SMAIL F, et al. Gas field revitalisation using optimised Multi-Phase pumps installations that can manage up to 100%gas volume fraction, first application in Algeria[C]//Paper presented at the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, October 2019, Bali, Indonesia: SPE-196296-MS. DOI:  10.2118/196296-MS.
    [33] HASSAN H S, OKTOBAREN R, YAHIA Z. Fit for purpose technology for idle well reactivation–a novel application of surface jet pump in offshore Malaysia[C]//Paper presented at the Offshore Technology Conference-Asia, March 2014, Kuala Lumpur, Malaysia: OTC-24832-MS. DOI:  10.4043/24832-MS.
    [34] SARSHAR S. The recent applications of jet pump technology to enhance production from tight oil and gas fields[C]//Paper presented at the SPE Middle East Unconventional Gas Conference and Exhibition, January 2012, Abu Dhabi, UAE: SPE-152007. DOI:  10.2118/152007-MS.
  • [1] 张裕良, 罗凯, 刘源, 王天阁, 周洪涛.  页岩气压裂返排液中表面活性剂对处理剂配方的影响 . 石油钻采工艺, doi: 10.13639/j.odpt.2020.03.015
    [2] 李牧.  下倾型页岩气水平井连续油管排水采气工艺 . 石油钻采工艺, doi: 10.13639/j.odpt.2020.03.013
    [3] 张绍槐.  用井筒完整性技术与标准一体化管理页岩气作业 . 石油钻采工艺, doi: 10.13639/j.odpt.2019.02.011
    [4] 韩慧芬, 王良, 贺秋云, 杨建.  页岩气井返排规律及控制参数优化 . 石油钻采工艺, doi: 10.13639/j.odpt.2018.02.019
    [5] 马小龙.  焦石坝工区页岩气整体固井技术 . 石油钻采工艺, doi: 10.13639/j.odpt.2017.01.011
    [6] 王敏生, 光新军, 戴文潮, 曲海.  微井眼鱼骨增产技术 . 石油钻采工艺, doi: 10.13639/j.odpt.2016.05.014
    [7] 张绍辉, 王凯, 王玲, 张晓辉, 王帅.  CO2 驱注采工艺的应用与发展 . 石油钻采工艺, doi: 10.13639/j.odpt.2016.06.030
    [8] 申峰, 杨洪, 刘通义, 林波, 陈光杰, 谭坤.  抗高温清洁CO2 泡沫压裂液在页岩气储层的应用 . 石油钻采工艺, doi: 10.13639/j.odpt.2016.01.019
    [9] 李彦尊, 李相方, 徐敏, 武文涛, 张晓舟.  页岩气藏产量递减预测模型研究及应用 . 石油钻采工艺, doi: 10.13639/j.odpt.2015.06.018
    [10] 刘明国, 孔华, 兰凯, 张敏, 李亚南.  焦石坝区块?311.2 mm 井眼定向段钻头优选与应用 . 石油钻采工艺, doi: 10.13639/j.odpt.2015.03.007
    [11] 房大志, 曾辉, 王宁, 张勇.  从Haynesville 页岩气开发数据研究高压页岩气高产因素 . 石油钻采工艺, doi: 10.13639/j.odpt.2015.02.016
    [12] 任金山, 吴艳华, 关利军, 金颢, 何玉发.  西非某区块E-1 井稠油人工举升测试实践 . 石油钻采工艺, doi: 10.13639/j.odpt.2015.01.035
    [13] 文昌玉, 苏鹏, 王磊, 文远静, 袁良, 武朗.  低压气井井口增压开采技术 . 石油钻采工艺, doi: 10.13639/j.odpt.2015.05.031
    [14] 康毅力, 皇凡生, 游利军, 俞杨烽, 练章华.  钻井液浸泡页岩裂缝宽度的模拟及应用 . 石油钻采工艺, doi: 10.13639/j.odpt.2014.04.011
    [15] 刘晓华, 邹春梅, 姜艳东, 翟振宇.  页岩气水平井动态评价方法   . 石油钻采工艺,
    [16] 李宪文, 唐梅荣, 陈宝春, 赵文, 刘利霞, 樊凤玲.  特低渗厚油层多级加砂压裂工艺试验 . 石油钻采工艺,
    [17] 苏崇华.  生物酶解堵增产研究与应用 . 石油钻采工艺,
    [18] 关密生, 王如平.  采气井超声波雾化排液原理探讨 . 石油钻采工艺, doi: 10.3969/j.issn.1000-7393.1998.02.025
    [19] 李生莉, 王新志, 吴大军.  降压解堵排酸技术的研究与应用 . 石油钻采工艺, doi: 10.3969/j.issn.1000-7393.1998.03.020
    [20] 周明卿, 祝俊峰, 樊灵, 张琪.  低渗透油藏喷射泵电潜泵组合深抽工艺研究及应用 . 石油钻采工艺, doi: 10.3969/j.issn.1000-7393.1997.04.017
  • 加载中
计量
  • 文章访问数:  0
  • 被引次数: 0
出版历程
  • 修回日期:  2022-05-05
  • 网络出版日期:  2022-09-22

国外页岩气井人工举升增产技术研究现状与进展

    基金项目:  中国石油天然气集团有限公司重大现场试验项目“深层页岩气有效开采关键技术攻关与试验”(编号:2019F-31)
    作者简介:

    叶长青(1976-),2007年毕业于西南石油大学油气田开发专业,硕士,现从事排水采气技术研究工作。通讯地址:(610017)四川省成都市小关庙后街23号。E-mail:y_cq@petrochina.com.cn

    通讯作者: 高翔(1984-),2015年毕业于西南石油大学油气田开发专业,硕士,现从事井下作业与采油工艺研究工作。通讯地址:(102206)北京市昌平区黄河街5号院1号楼。E-mail: gaoxiang_gcy@sina.com
  • 中图分类号: TE37;TE355

摘要: 压裂后产量快速降低是页岩气井生产的典型特征,不施加干预措施很难实现经济开发。为页岩气井优选合理的人工举升工艺,排出井筒积液,稳定页岩气井产量,提高单井可采储量,是页岩气藏高效开发的核心工作之一。调研了常规人工举升工艺在北美页岩气产区的应用情况,分析了各项技术应用的限制因素和存在的不足;针对页岩气井寿命周期内的压裂液返排、处理段塞流、前期及后期生产特征,总结出了页岩气井不同生产阶段人工举升工艺的优选方案,并阐述了应考虑的影响因素和注意事项;最后,介绍了两种页岩气井增压增产新技术的工艺原理和应用效果。该研究可以为国内页岩气田的经济高效开发提供借鉴。

English Abstract

叶长青,马辉运,蔡道纲,高翔,杨振周,刘青. 国外页岩气井人工举升增产技术研究现状与进展[J]. 石油钻采工艺,2022,44(3):1-8
引用本文: 叶长青,马辉运,蔡道纲,高翔,杨振周,刘青. 国外页岩气井人工举升增产技术研究现状与进展[J]. 石油钻采工艺,2022,44(3):1-8
YE Changqing, MA Huiyun, CAI Daogang, GAO Xiang, YANG Zhenzhou, LIU Qing. Research status and progress of artificial lifting of shale gas wells abroad[J]. Oil Drilling & Production Technology, 2022, 44(3): 1-8
Citation: YE Changqing, MA Huiyun, CAI Daogang, GAO Xiang, YANG Zhenzhou, LIU Qing. Research status and progress of artificial lifting of shale gas wells abroad[J]. Oil Drilling & Production Technology, 2022, 44(3): 1-8

返回顶部

目录

    /

    返回文章
    返回