高黏减阻剂的研究与应用进展

周洪涛 宋宗效 邱晓慧 张敬春 马收 郑博玄 武晓通

周洪涛,宋宗效,邱晓慧,张敬春,马收,郑博玄,武晓通. 高黏减阻剂的研究与应用进展[J]. 石油钻采工艺,2022,44(3):1-8
引用本文: 周洪涛,宋宗效,邱晓慧,张敬春,马收,郑博玄,武晓通. 高黏减阻剂的研究与应用进展[J]. 石油钻采工艺,2022,44(3):1-8
ZHOU Hongtao, SONG Zongxiao, QIU Xiaohui, ZHANG Jingchun, MA Shou, ZHENG Boxuan, WU Xiaotong. Research and application of high-viscosity friction reducer[J]. Oil Drilling & Production Technology, 2022, 44(3): 1-8
Citation: ZHOU Hongtao, SONG Zongxiao, QIU Xiaohui, ZHANG Jingchun, MA Shou, ZHENG Boxuan, WU Xiaotong. Research and application of high-viscosity friction reducer[J]. Oil Drilling & Production Technology, 2022, 44(3): 1-8

高黏减阻剂的研究与应用进展

详细信息
    作者简介:

    周洪涛(1969-),1991年毕业于中国石油大学(华东)应用化学专业,2015年毕业于山东大学胶体与界面化学专业,博士。主要研究方向为油田化学,副教授,硕士生导师。通讯地址:(266580)山东省青岛市黄岛区长江西路66号。E-mail:zhouht@upc.edu.cn

  • 中图分类号: TE39

Research and application of high-viscosity friction reducer

  • 摘要: 近年来,高黏减阻剂逐渐取代瓜尔胶及其衍生物,成为主流压裂液化学剂,并逐渐成功应用于现场。基于此背景,本文从高黏减阻剂的发展历程、性能评价、增效研究以及现场应用4个方面对其进行了阐述。相对于传统压裂液,低浓度高黏减阻剂具有更加稳定的减阻性能,高浓度高黏减阻剂表现出优异的携砂性能,同时还有较低的储层伤害性,有很大的发展潜力。
  • [1] 赵金洲, 任岚, 蒋廷学, 等. 中国页岩气压裂十年: 回顾与展望[J]. 天然气工业, 2021, 41(8):121-142. doi:  10.3787/j.issn.1000-0976.2021.08.012

    ZHAO Jinzhou, REN Lan, JIANG Tingxue, et al. Ten years of gas shale fracturing in China: Review and prospect[J]. Natural Gas Industry, 2021, 41(8): 121-142. doi:  10.3787/j.issn.1000-0976.2021.08.012
    [2] 赵福麟. 采油用剂[M]. 东营: 石油大学出版社, 1997.

    ZHAO Fulin. Chemicals for oil production[M]. Dongying: Petroleum University Press, 1997
    [3] 刘银仓. 200℃温控低摩阻压裂液体系研究及应用[J]. 石油化工应用, 2021, 40(7):45-49. doi:  10.3969/j.issn.1673-5285.2021.07.009

    LIU Yincang. Research and application of 200 ℃ temperature controlled and low-resistance fracturing fluid system[J]. Petrochemical Industry Application, 2021, 40(7): 45-49. doi:  10.3969/j.issn.1673-5285.2021.07.009
    [4] TAN H C, WESSELOWSKI K S, WILLINGHAM J D. Delayed borate crosslinked fluids minimize pipe friction pressure[C]//Paper presented at the SPE Rocky Mountain Regional Meeting, May 1992, Casper, Wyoming: SPE-24342-MS. DOI:  10.2118/24342-MS.
    [5] 陈昊, 毕凯琳, 张军, 等. 非常规油气开采压裂用减阻剂研究进展[J]. 油田化学, 2021, 38(2):347-359. doi:  10.19346/j.cnki.1000-4092.2021.02.027

    CHEN Hao, BI Kailin, ZHANG Jun, et al. Progress of drag reducers used in slickwater hydrofracturing of unconventional hydrocarbons[J]. Oilfield Chemistry, 2021, 38(2): 347-359. doi:  10.19346/j.cnki.1000-4092.2021.02.027
    [6] MOTIEE M, JOHNSON M, WARD B, et al. High Concentration Polyacrylamide-Based Friction Reducer Used as a Direct Substitute for Guar-Based Borate Crosslinked Fluid in Fracturing Operations[C]//Paper presented at the SPE Hydraulic Fracturing Technology Conference, February 2016, The Woodlands, Texas, USA: SPE-179154-MS. DOI:  10.2118/179154-MS.
    [7] THOMAS HU Y, FISHER D, KURIAN P, et al. Proppant transport by a high viscosity friction reducer[C]//Paper presented at the SPE Hydraulic Fracturing Technology Conference and Exhibition, January 2018, The Woodlands, Texas, USA: SPE-189841-MS. DOI:  10.2118/189841-MS.
    [8] 夏熙, 杨二龙. 页岩气压裂液研究进展及展望[J]. 化学工程师, 2019, 33(7):59-63,76. doi:  10.16247/j.cnki.23-1171/tq.20190759

    XIA Xi, YANG Erlong. Research progress and prospect of shale gas fracturing fluid[J]. Chemical Engineer, 2019, 33(7): 59-63,76. doi:  10.16247/j.cnki.23-1171/tq.20190759
    [9] 薛俊杰, 郭东红, 管保山, 等. 减阻剂在页岩气压裂中的研究及应用[J]. 精细与专用化学品cn11-, 2021, 29(5):14-22. doi:  10.19482/j.cn11-3237.2021.05.04

    XUE Junjie, GUO Donghong, GUAN Baoshan, et al. Research and application of friction reducer for fracturing of shale gas reservoirs[J]. Fine and Specialty Chemicals, 2021, 29(5): 14-22. doi:  10.19482/j.cn11-3237.2021.05.04
    [10] LOSKUTOV K Y, SADRETDINOV A A, SAMOILOV M I, et al. Fracturing experience of tyumenskaya and vikulovskaya formations: Application of novel low-viscosity fracturing fluids as an alternative to guar-based fluids[C]// Paper presented at the SPE Russian Petroleum Technology Conference, October 2021, Virtual: SPE-206644-MS. DOI:  10.2118/206644-MS.
    [11] ELLAFI A, JABBARI H, TOMOMEWO O S, et al. Future of hydraulic fracturing application in terms of water management and environmental issues: A critical review[C]//Paper presented at the SPE Canada Unconventional Resources Conference, September 2020, Virtual: SPE-199993-MS. DOI:  10.2118/199993-MS.
    [12] Mathis S P, BRIERLEY G, SICKIES K, et al. Water-fracs provide cost-effective well stimulation alternative in san Joaquin valley wells[C]//Paper presented at the SPE/AAPG Western Regional Meeting, June 2000, Long Beach, California: SPE-62521-MS. DOI:  10.2118/62521-MS.
    [13] MAYERHOFER, J M, RICHARDSON M F, WALKER R N, et al. Proppants? We don't need no proppants[C]//Paper presented at the SPE Annual Technical Conference and Exhibition, October 1997, San Antonio, Texas: SPE-38611-MS. DOI:  10.2118/38611-MS.
    [14] 王素兵, 郭静, 尹丛彬. 清水压裂技术及其现场应用[J]. 钻采工艺, 2005, 28(4):49-50. doi:  10.3969/j.issn.1006-768X.2005.04.017

    WANG Subing, GUO Jing, YIN Congbin. Water- fracs Technology and Application on Site[J]. Drilling & Production Technology, 2005, 28(4): 49-50. doi:  10.3969/j.issn.1006-768X.2005.04.017
    [15] 王宇. 水溶性高分子[M]. 北京: 化学工业出版社, 2017.

    WANG Yu. Water soluble polymer[M]. Beijing: Chemical Industry Press, 2017.
    [16] 高轩. 粘弹性压裂液减阻流动规律研究[D]. 北京: 中国石油大学(北京), 2017.

    GAO Xuan. A study on the drag-reduction flow of viscoelastic fracturing fluid[D]. Beijing: China University of Petroleum (Beijing), 2017.
    [17] TIAN M, FANG B, JIN L P, et al. Rheological and drag reduction properties of hydroxypropyl xanthan gum solutions[J]. Chinese Journal of Chemical Engineering, 2015, 23(9): 1440-1446. doi:  10.1016/j.cjche.2015.04.003
    [18] 河北鑫合生物化工有限公司. 一种基于微生物多糖的页岩气滑溜水压裂液及其制备方法: CN201811275124.5[P]. 2018-10-30.

    Hebei Xinhe Biochemical CO. , LTD. A shale gas slick hydraulic fracturing fluid based on microbial polysaccharides and its preparation method: CN201811275124.5[P]. 2018-10-30.
    [19] 胡宇航. 纳米复合滑溜水压裂液配方优化及性能评价[D]. 北京: 中国地质大学(北京), 2021.

    HU Yuhang. Formulation optimization and performance evaluation of nanoparticle composite slickwater fracturing fluid [D]. Beijing: China University of Geosciences (Beijing), 2021.
    [20] WEI J M, JIA W F, ZUO L, et al. Turbulent drag reduction with an ultra-high-molecular-weight water-soluble polymer in slick-water hydrofracking[J]. Molecules, 2022, 27(2): 351. doi:  10.3390/molecules27020351
    [21] LUSTER J, DE JARED C, KHAN S, et al. Tunable friction reducer improves operational efficiency and increases production in the Eagle Ford[C]//Paper presented at the SPE Annual Technical Conference and Exhibition, September 2019, Calgary, Alberta, Canada: SPE-196105-MS. DOI:  10.2118/196105-MS.
    [22] JOHNSON M, WINKLER A, AFTEN C et al. Successful implementation of high viscosity friction reducer in marcellus shale stimulation[C]//Paper presented at the SPE/AAPG Eastern Regional Meeting, October 2018, Pittsburgh, Pennsylvania, USA: SPE-191774-18ERM-MS. DOI:  10.2118/191774-18ERM-MS.
    [23] VAN DOMELEN M, CUTRER W, COLLINS S, et al. Applications of viscosity-building friction reducers as fracturing fluids[C]//Paper presented at the SPE Oklahoma City Oil and Gas Symposium, March 2017, Oklahoma City, Oklahoma, USA: SPE-185084-MS. DOI:  10.2118/185084-MS.
    [24] 张帆, 肖博元, 汤养浩, 等. 搅拌装置与减阻剂减阻效果评价[C]//中国化学会、中国力学学会第九届全国流变学学术会议论文摘要集, 2008-01, 中国湖南长沙.

    ZHANG Fan, XIAO Boyuan, TANG Yanghao, et al. Evaluation of drag reduction effect of mixing device and drag reducing agent [C]//Chinese Chemical Society, Abstracts of the 9th National rheological conference of Chinese society of mechanics, 2008-01, Changsha Hunan, China.
    [25] DA SILVA M A, ROCHA N D O, CARVALHO C H, et al. New experimental technique to measure the efficiency of drag reducer additives for oil samples[J]. Energy & Fuels, 2009, 23(9): 4529-4532. doi:  10.1021/ef900427k
    [26] NAKKEN T, TANDE M, ELGSAETER A. Measurements of polymer induced drag reduction and polymer scission in Taylor flow using standard double-gap sample holders with axial symmetry[J]. Journal of Non-Newtonian Fluid Mechanics, 2001, 97(1): 1-12. doi:  10.1016/S0377-0257(00)00195-6
    [27] HONG C H, ZHANG K, CHOI H J, et al. Mechanical degradation of polysaccharide guar gum under turbulent flow[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(2): 178-180. doi:  10.1016/j.jiec.2009.09.073
    [28] LIM G H, CHOI H J, RENOU F, et al. Effects of hydrophobic modification of xanthan gum on its turbulent drag reduction characteristics[J]. Journal of Industrial and Engineering Chemistry, 2017, 54: 146-150. doi:  10.1016/j.jiec.2017.05.027
    [29] DAHLGREN K, GREEN B, WILLIAMS B, et al. Case studies of high viscosity friction reducers HVFR in the STACK Play[C]//Paper presented at the SPE Hydraulic Fracturing Technology Conference and Exhibition, January 2018, The Woodlands, Texas, USA: SPE-189893-MS. DOI:  10.2118/189893-MS.
    [30] GERI M B, FLORI R, ELLAFI A, et al. Correlated friction reduction and viscoelastic characterization of utilizing the permian produced water with HVFRs during hydraulic fracturing[C]//Paper presented at the Abu Dhabi International Petroleum Exhibition & Conference, November 2019, Abu Dhabi, UAE: SPE-197748-MS. DOI:  10.2118/197748-MS.
    [31] WANG Jie, ZHOU Fujian, BAI Hao, et al. A new approach to study the friction-reduction characteristics of viscous/conventional slickwater in simulated pipelines and fractures[J]. Journal of Natural Gas Science and Engineering, 2020, 83: 103620. doi:  10.1016/j.jngse.2020.103620
    [32] 赵福麟. 油田化学[M]. 东营: 中国石油大学出版社, 2010.

    ZHAO Fulin. Oilfield chemistry[M]. Dongying, China University of Petroleum Press, 2010
    [33] 司晓冬, 罗明良, 李明忠, 等. 压裂用减阻剂及其减阻机理研究进展[J]. 油田化学, 2021, 38(4):732-739. doi:  10.19346/j.cnki.1000-4092.2021.04.027

    SI Xiaodong, LUO Mingliang, LI Mingzhong, et al. Research progress of drag reducers for fracturing and its drag reduction mechanism[J]. Oilfield Chemistry, 2021, 38(4): 732-739. doi:  10.19346/j.cnki.1000-4092.2021.04.027
    [34] 刘致屿. 滑溜水压裂液减阻机理研究[D]. 北京: 中国石油大学(北京), 2019.

    LIU Zhiyu. Study on drag reduction mechanism of slick-water fracturing fluid[D]. Beijing: China University of Petroleum (Beijing), 2019.
    [35] BA GERI M, FLORI R, SHERIF H. Comprehensive study of elasticity and shear-viscosity effects on proppant transport using HFVRs on High-TDS produced water[C]//Paper presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, July 2019, Denver, Colorado, USA: URTEC-2019-99-MS. DOI:  10.15530/urtec-2019-99.
    [36] THOMAS HU Y, FISHER D, KURIAN P, et al. Proppant transport by a high viscosity friction reducer[C]//Paper presented at the SPE Hydraulic Fracturing Technology Conference and Exhibition, January 2018, The Woodlands, Texas, USA: SPE-189841-MS. DOI:  10.2118/189841-MS.
    [37] HAZRA S, MADRID V, LUZAN T, et al. Correlating the performance of friction reducers with source water chemistry[C]//Paper presented at the SPE Oklahoma City Oil and Gas Symposium, April 2019, Oklahoma City, Oklahoma, USA: SPE-195199-MS. DOI:  10.2118/195199-MS.
    [38] PHATAK A, SEYMOUR B, REN G, et al. Enhancing performance of high viscosity friction reducers HVFRs in brine[C]//Paper presented at the SPE International Conference on Oilfield Chemistry, December 2021, The Woodlands, Texas, USA: SPE-204339-MS. DOI:  10.2118/204339-MS.
    [39] BIHERI G, ABDULMOHSIN I. Experimental study: High viscosity friction reducer fracture fluid rheological advantages over the guar linear gel[C]//Paper presented at the 55th U. S. Rock Mechanics/Geomechanics Symposium, June 2021, Virtual: ARMA-2021-1814.
    [40] ANSCHUTZ D A, LOWREY T A, STRIBLING M, et al. An in-depth study of proppant transport and placement with various fracturing fluids[C]//Paper presented at the SPE Annual Technical Conference and Exhibition, September 2019, Calgary, Alberta, Canada: SPE-196073-MS. DOI:  10.2118/196073-MS.
    [41] BIHERI G, IMQAM A. Proppant transport using high-viscosity friction reducer fracture fluids at high-temperature environment[J]. SPE Journal, 2022, 27(1): 60-76. doi:  10.2118/206750-PA
    [42] QUINTERO H, FARION G. Successful application of a salt yolerant high viscous friction reducer technology: Past and Present[C]//Paper presented at the SPE Annual Technical Conference and Exhibition, September 2019, Calgary, Alberta, Canada: SPE-196211-MS. DOI:  10.2118/196211-MS.
    [43] 蒋其辉. 超分子凝胶压裂液研制与作用机理研究[D]. 北京: 中国石油大学(北京), 2019

    JIANG Qihui. Development of supramolecular-gel fracturing fluid and action mechanism research[D]. Beijing: China University of Petroleum (Beijing), 2019.
    [44] BENNION D B, THOMAS F B, BIETZ R F. Low permeability gas reservoirs: Problems, opportunities and solutions for drilling, completion, stimulation and production[C]//Paper presented at the SPE Gas Technology Symposium, Calgary, Alberta, Canada, April 1996: SPE-35577-MS. DOI:  10.2118/35577-MS.
    [45] BA GERI M, ELLAFI A, FLORI R, et al. A comprehensive review of formation damage caused by high-viscosity friction reducers[C]//Paper presented at the SPE Liquids-Rich Basins Conference - North America, November 2019, Odessa, Texas, USA: SPE-197081-MS. DOI:  10.2118/197081-MS.
    [46] BA GERI M, IMQAM A, FLORI R. A critical review of using high viscosity friction reducers as fracturing fluids for hydraulic fracturing applications[C]//Paper presented at the SPE Oklahoma City Oil and Gas Symposium, April 2019, Oklahoma City, Oklahoma, USA: SPE-195191-MS. DOI:  10.2118/195191-MS.
    [47] BA GERI M, IMQAM A, SUHAIL M. Investigate proppant transport with varying perforation density and its impact on proppant dune development inside hydraulic fractures[C]//Paper presented at the SPE Middle East Oil and Gas Show and Conference, March 2019, Manama, Bahrain: SPE-195018-MS. DOI:  10.2118/195018-MS.
    [48] XU K, LU Y J, WANG X, et al. Development of a smart slickwater with high proppant-carrying capability for shale reservoirs[C]//Paper presented at the Abu Dhabi International Petroleum Exhibition & Conference, November 2019, Abu Dhabi, UAE: SPE-197817-MS. DOI:  10.2118/197817-MS.
    [49] ZHANG, Y, ZHOU F J, KIU Y Z. Influence factors of multifunctional viscous drag reducers and their optimization for unconventional oil and gas reservoirs[J]. ACS Omega, 2021, 6(47): 32101-32108. doi:  10.1021/acsomega.1c04869
    [50] POPENEY C, HARKNESS K, COPELAND L, et al. Revamping polymer architecture for optimized fracturing fluids in fresh and produced water[C]//Paper presented at the International Petroleum Technology Conference, February 2022, Riyadh, Saudi Arabia: IPTC-22434-MS. DOI:  10.2523/IPTC-22434-MS.
    [51] UCHUEV R P, PRUTSAKOV A S, CHEBYKIN N V, et al. New milestone in Russian fracturing–low viscous frac fluids based on synthetic polymer Gazpromneft-Khantos case study[C]//Paper presented at the SPE Russian Petroleum Technology Conference, October 2020, Virtual: SPE-201825-MS. DOI:  10.2118/201825-MS.
    [52] LOGINOV A, PAVLOVA S, OLENNIKOVA O, et al. Introduction of novel alternative to guar-based fracturing fluid for Russian conventional reservoirs[C]//Paper presented at the SPE Russian Petroleum Technology Conference, October 2019, Moscow, Russia: SPE-196971-MS. DOI:  10.2118/196971-MS.
    [53] CASERO A, GOMAA A, RONDEROS J, et al. 8070 Miles from the field to the Lab and back: A pragmatic sequencing of laboratory and field-based fluid testing and QAQC: A case history from Sichuan region, China[C]//Paper presented at the SPE Hydraulic Fracturing Technology Conference and Exhibition, May 2021, Virtual: SPE-204189-MS. DOI:  10.2118/204189-MS..
    [54] 刘萍, 管保山, 徐敏杰, 等. 220℃超高温聚合物压裂液性能研究[J]. 石油化工应用, 2018, 37(8):12-15. doi:  10.3969/j.issn.1673-5285.2018.08.003

    LIU Ping, GUAN Baoshan, XU Minjie, et al. Performance study of 220℃ ultrahigh-temperature polymer fracturing fluid[J]. Petrochemical Industry Application, 2018, 37(8): 12-15. doi:  10.3969/j.issn.1673-5285.2018.08.003
    [55] 杨振周, 刘付臣, 宋璐璐, 等. 耐温230℃的新型超高温压裂液体系[J]. 钻井液与完井液, 2018, 35(1):101-104. doi:  10.3969/j.issn.1001-5620.2018.01.019

    YANG Zhenzhou, LIU Fuchen, SONG Lulu, et al. A new fracturing fluid with temperature resistance of 230 ℃[J]. Drilling Fluid & Completion Fluid, 2018, 35(1): 101-104. doi:  10.3969/j.issn.1001-5620.2018.01.019
    [56] 许可, 侯宗锋, 常进, 等. 耐245℃超高温压裂液稠化剂的制备与性能分析[J]. 应用化工sn, 2020, 49(12):3031-3033. doi:  10.3969/j.issn.1671-3206.2020.12.016

    XU Ke, HOU Zongfeng, CHANG Jin, et al. Research and performance analysis of 245℃ ultra-high temperature fracturing liquid thickener[J]. Applied Chemical Industry, 2020, 49(12): 3031-3033. doi:  10.3969/j.issn.1671-3206.2020.12.016
    [57] 薛俊杰, 朱卓岩, 欧阳坚, 等. 耐盐耐高温三元聚合物压裂液稠化剂的制备与性能评价[J]. 油田化学, 2018, 35(1):41-46,59. doi:  10.19346/j.cnki.1000-4092.2018.01.008

    XUE Junjie, ZHU Zhuoyan, OU Yangjian, et al. Preparation and performance evaluation of terpolymer thickening agent with salt tolerance and high temperature resistance for oilfield fracturing fluid[J]. Oilfield Chemistry, 2018, 35(1): 41-46,59. doi:  10.19346/j.cnki.1000-4092.2018.01.008
    [58] 许可, 侯宗锋, 翁定为, 等. 耐高温压裂液及其添加剂研究进展[J]. 当代化工, 2022, 51(4):936-940,974. doi:  10.13840/j.cnki.cn21-1457/tq.2022.04.006

    XU Ke, HOU Zongfeng, WENG Dingwei, et al. Research progress of high temperature resistant fracturing fluid system and additives[J]. Contemporary Chemical Industry, 2022, 51(4): 936-940,974. doi:  10.13840/j.cnki.cn21-1457/tq.2022.04.006
  • [1] 赵海洋, 刘志远, 唐旭海, 李新勇, 耿宇迪, 张俊江.  缝洞型碳酸盐岩储层循缝找洞压裂技术 . 石油钻采工艺, doi: 10.13639/j.odpt.2021.01.014
    [2] 贺甲元, 程洪, 向红, 翟晓鹏, 耿宇迪, 王海波.  塔河油田碳酸盐岩储层暂堵转向压裂排量优化 . 石油钻采工艺, doi: 10.13639/j.odpt.2021.02.015
    [3] 曾浩, 朱方辉, 张文昌, 张宗伟, 刘子雄, 蔡楠.  普光气田绒囊修井液结合固相堵剂暂堵深部低压气层 . 石油钻采工艺, doi: 10.13639/j.odpt.2020.05.022
    [4] 赵俊, 杨生文, 孙泽宁, 李宇, 张家富, 王相春.  苏里格深部煤系致密气储层绒囊流体控水压裂 . 石油钻采工艺, doi: 10.13639/j.odpt.2020.05.021
    [5] 黄知娟, 潘丽娟, 路辉, 郑力会, 李冬梅, 海小祥.  大数据分析顺北油田SHB-X井试采产液量骤降原因 . 石油钻采工艺, doi: 10.13639/j.odpt.2019.03.013
    [6] 张汝生, 李克智, 黄志文.  定北区块致密气储层水平井压裂参数优化 . 石油钻采工艺, doi: 10.13639/j.odpt.2017.02.022
    [7] 聂帅帅, 郑力会, 陈必武, 侯涛, 彭睿, 付毓伟.  郑3X煤层气井绒囊流体重复压裂控水增产试验 . 石油钻采工艺, doi: 10.13639/j.odpt.2017.03.020
    [8] 张媛.  产油趋势法评价绒囊修井液在海上SZ36-1油田修井效果 . 石油钻采工艺, doi: 10.13639/j.odpt.2014.04.016
    [9] 郑力会, 魏攀峰.  页岩气储层伤害30年研究成果回顾 . 石油钻采工艺,
    [10] 崔金榜, 陈必武, 颜生鹏, 袁光杰, 夏焱, 王秀梅.  沁水盆地在用煤层气钻井液伤害沁水3#煤岩室内评价 . 石油钻采工艺,
    [11] 李良川, 卢淑芹, 彭通, 张明伟, 米凡.  冀东油田绒囊修井液控制储层伤害应用研究 . 石油钻采工艺,
    [12] 汪伟英, 陶杉, 黄磊, 邹来方, 田中兰, 杨恒林.  煤层气储层钻井液结垢伤害实验研究 . 石油钻采工艺,
    [13] 张光明, 汤子余, 姚红星, 付慧玉.  注入水水质对储层的伤害 . 石油钻采工艺, doi: 10.3969/j.issn.1000-7393.2004.03.014
    [14] 李勇明, 赵金洲, 郭建春, 崔慧芝, 王万迅.  裂缝性低渗透储层压裂液滤失计算新模型 . 石油钻采工艺, doi: 10.3969/j.issn.1000-7393.2004.05.014
    [15] 张强德, 王培义, 杨东兰.  储层无伤害压裂技术——液态CO2压裂 . 石油钻采工艺, doi: 10.3969/j.issn.1000-7393.2002.04.017
    [16] 潘雨兰, 曹建达.  低渗储层自生热压裂改造技术 . 石油钻采工艺, doi: 10.3969/j.issn.1000-7393.1998.05.020
    [17] 肖芳淳.  压裂酸化中选井选层的模糊物元评价分析 . 石油钻采工艺, doi: 10.3969/j.issn.1000-7393.1996.06.009
    [18] 阚新伟, 岳玉堂.  树脂预包桃壳防砂的研究与应用 . 石油钻采工艺, doi: 10.3969/j.issn.1000-7393.1993.02.017
    [19] 王卓飞, 张士诚, 王鸿勋.  高砂比压裂设计方法 . 石油钻采工艺, doi: 10.3969/j.issn.1000-7393.1992.02.007
    [20] 蒋国华.  前置压裂液的实验研究 . 石油钻采工艺, doi: 10.3969/j.issn.1000-7393.1989.06.011
  • 加载中
计量
  • 文章访问数:  0
  • 被引次数: 0
出版历程
  • 修回日期:  2022-05-05

高黏减阻剂的研究与应用进展

    作者简介:

    周洪涛(1969-),1991年毕业于中国石油大学(华东)应用化学专业,2015年毕业于山东大学胶体与界面化学专业,博士。主要研究方向为油田化学,副教授,硕士生导师。通讯地址:(266580)山东省青岛市黄岛区长江西路66号。E-mail:zhouht@upc.edu.cn

  • 中图分类号: TE39

摘要: 近年来,高黏减阻剂逐渐取代瓜尔胶及其衍生物,成为主流压裂液化学剂,并逐渐成功应用于现场。基于此背景,本文从高黏减阻剂的发展历程、性能评价、增效研究以及现场应用4个方面对其进行了阐述。相对于传统压裂液,低浓度高黏减阻剂具有更加稳定的减阻性能,高浓度高黏减阻剂表现出优异的携砂性能,同时还有较低的储层伤害性,有很大的发展潜力。

English Abstract

周洪涛,宋宗效,邱晓慧,张敬春,马收,郑博玄,武晓通. 高黏减阻剂的研究与应用进展[J]. 石油钻采工艺,2022,44(3):1-8
引用本文: 周洪涛,宋宗效,邱晓慧,张敬春,马收,郑博玄,武晓通. 高黏减阻剂的研究与应用进展[J]. 石油钻采工艺,2022,44(3):1-8
ZHOU Hongtao, SONG Zongxiao, QIU Xiaohui, ZHANG Jingchun, MA Shou, ZHENG Boxuan, WU Xiaotong. Research and application of high-viscosity friction reducer[J]. Oil Drilling & Production Technology, 2022, 44(3): 1-8
Citation: ZHOU Hongtao, SONG Zongxiao, QIU Xiaohui, ZHANG Jingchun, MA Shou, ZHENG Boxuan, WU Xiaotong. Research and application of high-viscosity friction reducer[J]. Oil Drilling & Production Technology, 2022, 44(3): 1-8

返回顶部

目录

    /

    返回文章
    返回