李文拓,罗鸣,黄洪林,李军,肖平. 高温高压小井眼水平井环空ECD综合计算模型[J]. 石油钻采工艺,2023,45(3):259-268. DOI: 10.13639/j.odpt.202209008
引用本文: 李文拓,罗鸣,黄洪林,李军,肖平. 高温高压小井眼水平井环空ECD综合计算模型[J]. 石油钻采工艺,2023,45(3):259-268. DOI: 10.13639/j.odpt.202209008
LI Wentuo, LUO Ming, HUANG Honglin, LI Jun, XIAO Ping. Comprehensive calculation model of annular ECD for high-temperature high-pressure slim-hole horizontal wells[J]. Oil Drilling & Production Technology, 2023, 45(3): 259-268. DOI: 10.13639/j.odpt.202209008
Citation: LI Wentuo, LUO Ming, HUANG Honglin, LI Jun, XIAO Ping. Comprehensive calculation model of annular ECD for high-temperature high-pressure slim-hole horizontal wells[J]. Oil Drilling & Production Technology, 2023, 45(3): 259-268. DOI: 10.13639/j.odpt.202209008

高温高压小井眼水平井环空ECD综合计算模型

Comprehensive calculation model of annular ECD for high-temperature high-pressure slim-hole horizontal wells

  • 摘要: 精确计算井筒环空ECD是钻进参数设计及安全、高效钻进的基础。为了提高其计算精度,基于高温高压下钻井液流变性测试数据,结合多元非线性回归获取钻井液密度和流变参数计算模型。通过耦合钻井液密度和流变参数回归模型与井筒传热模型,建立高温高压小井眼水平井环空ECD综合计算模型。与实测PWD数据相比,该模型平均相对误差为0.72%。研究表明,在计算高温高压小井眼水平井环空ECD时,温度和压力对钻井液密度和流变参数影响不可忽略。在钻进过程中,随着钻井液循环时间的增加,下部井段环空温度不断降低,钻井液密度与稠度系数逐渐增加,环空压耗与ECD不断增加。温度梯度和钻井液排量通过影响环空温度分布,进而影响环空ECD。地温梯度越高,环空温度越高,环空ECD越小;钻井液排量越大,环空温度越低,环空ECD越大。钻柱转速、环空尺寸和接头尺寸是影响环空ECD的重要因素。随着钻柱转速增加,环空压耗增大,进而导致环空ECD增加,但增加幅度逐渐减小;接头尺寸越大,对应的环空尺寸越小,环空压耗越大,进而导致环空ECD越大。研究结果为高温高压地层小井眼水平井的安全、高效钻进提供理论基础。

     

    Abstract: Accurately calculating the ECD of wellbore is the foundation for drilling parameter design and safe efficient drilling. To enhance calculation accuracy, a comprehensive model for ECD calculation in slim-hole horizontal wells under high-temperature and high-pressure conditions is developed. This model is based on rheological test data of drilling fluids under high-temperature and high-pressure conditions, and utilizes a multivariate nonlinear regression to get drilling fluid density and rheological parameters. By coupling the drilling fluid density with the rheological parameter regression model and the wellbore heat transfer model, a comprehensive ECD calculation model was established for slim-hole horizontal wells under high-temperature and high-pressure conditions. When compared to actual PWD data, the average relative error of the proposed model is 0.72%. The research shows that temperature and pressure impact greatly on drilling fluid density and rheological parameters when calculating ECD for small-diameter wellbores under high-temperature and high-pressure conditions. During the drilling process, as drilling fluid circulation time increases, the temperature of the lower wellbore section decreases, resulting in increased drilling fluid density and viscosity coefficient, and subsequently leading to increased annular pressure loss and ECD. Temperature gradient and drilling fluid displacement influence the distribution of annular temperature, thereby affecting annular ECD. The higher the geothermal gradient, the higher the annular temperature and the lower the annular ECD. And the lager the drilling fluid displacement, the lower the annular temperature and the higher the annular ECD. Factors such as drilling pipe rotational speed, annular size, and connection size play important roles in influencing annular ECD. As drilling pipe rotational speed increases, annular pressure drops, subsequently raising annular ECD, but the increase rate gradually diminishes. The larger the connection sizes, the smaller the corresponding annular sizes and the larger the annular pressure loss, and thus the higher the annular ECD. The research results can provide a theoretical basis for safe and efficient drilling in slim-hole horizontal wells under high-temperature and high-pressure conditions.

     

/

返回文章
返回