-
古潜山油藏是华北油田的主力油藏[1]。为探寻大幅度提高其采收率的有效途径,1986年华北油田与法国TOTAL石油公司合作,在雁翎潜山油藏北山头开展了注氮气重力驱先导性试验[2-3]。1994年10月—1995年12月,累计注气2 100余万m3,折合地下体积11.7万m3。通过注气,在潜山顶部形成了次生气顶,同时气体推动顶部“阁楼油”和油水界面下移,形成了“气顶-原油富集带-底水淹带”的流体分布新格局。其中潜山高部位形成的次生气顶平均高度38 m,原油富集带平均高度43 m。在当时技术条件下,利用潜山已有的先期裸眼直井采油,气液产出差异巨大,只出气不出液[4]。
-
利用潜山先期已有的裸眼直井采油,气柱、液柱直接与井筒沟通,井筒中气、油、水三相共存可视为“三通路并联模型”[5],如图1a所示,各相流量满足达西定律
$Q = kA\Delta p/(\mu L)$ ,下标g、o、w分别代表气、油、水相,各相态流度差异大,相同条件下(油层温度、压力等),N2、油、水蒸汽黏度分别为0.03、15.9、0.3 mPa·s,按地层温度、压力条件下测算,气流量约是油流量的530倍。进行悬挂小尾管采油工艺试验,由于油柱高度有限,依靠油柱高度存在的压力差控制气柱,气体易下侵进入油管使管内液柱压力急剧变小,形成“虹吸”,导致生产压差突破临界压差,气量急剧增加,试验效果不理想[4]。隔—控—分采油工艺设计理念为:在气、油、水三相共存的裸眼井段,改变完井方式,采用套管加深—固井射孔完井,有效隔绝气相、水相与井筒直接沟通,形成有利的气、液流态分布,将“三通路并联流态模型”改变为“单通路串联流态模型”(图1b);控制合理的采液速度,尽可能避免“气锥”下侵进入井筒;在井筒内利用重力驱气、液相态分离的特点,高效分离气体疏导气液从不同的通道产出,实现油井连续正常生产(图2)。
裂缝性潜山油藏高角度裂缝发育,易产生失返性恶性漏失,导致固井质量合格率不到1/3,无法形成有效的气、水密封。因此,解决气、油、水三相带分布地层的套管固井质量问题,成为隔—控—分采油工艺实现的关键。
-
雁翎油田雾迷山组缝、洞、孔发育,储集空间为裂缝-孔洞型,并以高角度裂缝为主[6]。根据已钻井取心资料分析,裂缝线密度一般为40~80条/m,裂缝宽度平均为0.57~1.23 mm,最大裂缝宽度为14 mm,倾角大于70°的裂缝占79%。其钻、完井过程中,常发生失返性恶性漏失,入井液有进无出,造成无法正常钻进、固井完井。据统计,前期钻井漏失井占总井数的56%,有4口井漏失量达1 000 m3以上,最大超过7 000 m3。采用复合堵漏剂、石灰乳、填砂等堵漏方法[7],成功率低,部分井因漏失严重被迫提前完钻。采用常规密度水泥浆固井易井漏、低返,套管固井质量合格率低[4,8-9]。其恶性漏失堵漏问题长期未得到解决。
对于气、油、水三相带分布的高角度裂缝潜山储层,重力为流体的主要驱动方式,由于堵漏浆与地层各相流体存在较大密度差(气液密度差约为水液的7~8倍),气柱段堵漏浆悬空,堵塞驻留困难。常规堵漏多基于水相,充填、架桥等刚性封堵没有充分考虑漏失通道形态,堵漏充填用量难以预计[10-11];固结型堵漏浆反应有一定时间(>2 h)[12],在固结前无法有效驻留,常在重力作用下快速沿高角度缝洞漏失沉入下倾裂缝深部,而上倾裂缝封堵成功率低(图3);提高地层承压理论适用于微裂缝欠发育地层[13-14](裂缝宽度分布在0.1~1 mm)。
因此克服重力分异、密度差影响的有效驻留承压是堵漏成功与否的关键[13-15]。将碳酸盐岩发育高角度裂缝看作无限宽平行平面壁间流(图4),流体力学计算表明缝宽是决定性因素[16-17](式(1)~式(3)),堵漏材料要与裂缝口喉通道有较好的匹配性。
$$ \frac{{{{\rm{d}}^2}u}}{{{\rm{d}}{y^2}}} = - \frac{{\gamma J}}{\mu } $$ (1) $$ u = \frac{{\gamma J}}{{2\mu }}({h^2} - {y^2}) $$ (2) $$ Q=\frac{2}{3} \frac{\gamma J}{\mu} h^{3} $$ (3) 式中,u为流速,m/s;μ为流体黏度,mPa · s;h为裂缝宽度的一半,m;J为水力坡度,即单位质量液体流过单位流程的水头损失;Q为缝内流量,m3/s;
$\gamma $ 为重力密度,即密度与加速度乘积,N/m3。 -
堵漏浆以环氧改性酚醛树脂预聚体为主体材料(图5),为无固相液体,不溶于油、水,其地面黏度300~600 mPa·s,可控反应时间2~8 h,抗拉强度10.8~13.1 MPa,抗压强度18.3~87 MPa抗剪切强度9.2~28.9 MPa,酸溶率不大于1%,碱溶率不大于1%,盐溶率不大于1%。该堵漏浆黏度较低,可穿透力强,渗入性好,现场挤注压力一般升高1~5 MPa,与岩土粘结力强;反应可控,在40~90 ℃具有2 h以上的可控反应时间(图6);固化后具有良好的综合机械性能,抗压强度大于18 MPa,抗拉、抗剪切性能优于水泥;固化体化学稳定性好,有效期长,钻塞解堵。可取代常用的油井水泥,应用于油(水)井堵漏、套管加固修复及水层、水淹层和水窜大孔道层段的封堵,其经初凝、硬化和终凝形成固化体,起到封堵作用[18]。
-
实验发现,树脂缩聚过程对温度敏感,体现出逐步聚合的反应特征,如图6所示,在90~120 ℃高温、催化作用下,树脂预聚体引发链式缩聚,同时增黏(体系黏度突增至几个Pa · s),放热进一步缩聚闪凝至初凝态,瞬间失去流动性(图7),最后形成坚硬致密的固化体。观察发现,在90 ℃以上反应速率突升,由黏稠至初凝的闪凝时间仅0.08~0.2 h,闪凝指增黏后形成初始强度的时间点,由于时间很短(相比于初凝时间),本文称之为闪凝。可以看到,实验现象与海底火山熔岩喷发、岩浆遇水快速冷堆积的自然现象相近。
图 7 树脂缩聚闪凝反应现象(评价温度:90~120 ℃)
Figure 7. Polycondensation and fast setting of resin (the experimental temperature at 90–120 ℃)
基于热敏树脂在不同温度下反应速率差异及流温与静温的温度差[19-20],利用挤注速率和时间控制闪凝。采用pipesim软件、热力学传热计算(图8),表明强漏失(漏失速率大于15 m3/h)裂缝应采用0.12~0.22 m3/min小排量连续挤注,使刚进入地层时浆液温度控制在80~90 ℃,进入地层后快速换热升温至100 ℃以上,于0.2 h内闪凝,固化堆积封堵上倾、下倾裂缝通道,从而基于温控闪凝,采用封喉承压方式[21-22]实现堵漏液边流边固化,形成由下而上缝洞内堆积,直至堵塞裂缝(图9)。由于要形成流温与静温的温度差(20 ℃以上),该技术适用于90~130 ℃高温油藏,实施时可参考模拟计算结果,采用小排量连续挤注配合控制闪凝时间。相对于常规堵漏,该技术堵漏剂用量小(1.0~3.0 m3),承压强度高(大于10 MPa),工艺简单,实现了堵漏剂有效驻留,堵漏成功率和安全性较高,同时降低材料消耗和施工成本,保证了固井完井质量。
-
Y340井位于雁翎油田北断块高部位偏南边部注氮重力驱次生气顶区域内,原为试验区的注气观察井,裸眼完井,裸眼井段气、油、水三相共存,其中气顶段有36 m (全部暴露在气顶内),关井3~4 h后起压,井口套管压力15~22 MPa。该井钻至潜山裸眼段发生恶性漏失,有进无出,最大漏速59.7 m3/h,一般10~40 m3/h,漏失量达7 286 m3 (本区块漏失量最大),采用常规水泥石灰堵漏未见效。储层成像测井显示裂缝、裂缝带和缝洞高度发育,以一类、二类裂缝为主。填砂注灰至预定油气界面处(2 891.7 m)后循环压井,测试气柱段循环漏失量为30.8 m3/h (压力5 MPa),吸水量为36.4 m3/h (压力4 MPa)。
-
由于该井具有多段高漏失特性,单次措施成功率极低,气柱段的存在更加剧了堵漏难度,采用温控闪凝工艺封堵漏失段。挤注热敏树脂2.0 m3,控制排量0.15~0.2 m3/min,使堵剂到达井底漏失段时正好处于闪凝发生的临界温度,发生闪凝后,井口压力急剧上升6~10 MPa。漏失段堵漏后正试压15 MPa,稳压30 min压降为0 MPa,为尾管固井创造了良好的循环上返承压条件,固井质量全井段优质率达到了100%。经富油带中部射孔,常规管式泵完井,结合人工举升控制生产压差,实现油井连续正常生产,初期日产油11.6 t/d,现日产液8.2 m3/d,日产油4.9 t/d,含水39.9%,已累计产油2 574 t,目前继续有效。
-
气柱段承压堵漏试验效果见表1,温控闪凝工艺取得显著应用效果,堵后实现了裸眼段全封堵,试压测试表明,密闭承压15 MPa,后续固井质量优,测气柱段声幅平均值为6.9%。
表 1 Y340井气柱段承压堵漏效果
Table 1. Performance of pressure-bearable channel plugging of the gas column interval of Well Y340
堵漏工艺 裸眼留塞/m 吸水量/(m3 · h-1) 循环漏失量/(m3 · h-1) 堵后承压/MPa 堵前 堵后 堵前 堵后 常规堵漏 21.69 36.4 21 30.8 7.2 驻留温控闪凝 32.96 18 0 6.5 0 15 温控闪凝工艺可有效解决恶性漏失堵漏难题,实现气柱段裂缝内的密闭全封堵,达到较高的承压能力。裸眼裂缝封堵成功将气顶与井筒有效隔绝,为注气重力驱采油创造了良好的井筒条件,实验井射孔后采油达到了避气封水的开采要求,解决了富集油有效采出的技术瓶颈。
-
(1)提出了隔—控—分采油工程设计理念,实现了气相、水相与井筒的有效隔绝,解决了困扰华北油田20余年的潜山注气重力驱富集油有效采出技术难题。
(2)利用热敏树脂随温度升高缩聚“闪凝”的流变特性,实现了堵漏浆在裸眼裂缝内的“有效驻留”,解决了注气段高角度裂缝恶性漏失的问题,可在同类井中进一步推广应用。
Research and testing of gas injection gravity drainage of enriched oil in buried hill reservoirs
-
摘要: 华北油田于20世纪90年代在古潜山油藏开展了注氮气重力驱提高采收率试验,在试验区形成了“气顶-富集油带-底水”的格局,先期采用裸眼完井利用旧井采油,只出气不出油,为此,进行了油藏工程、采油工艺一体化研究,提出“隔—控—分”采油工艺设计理念,通过克服重力分异、密度差影响的有效驻留承压堵漏,隔绝气相、水相与井筒直接沟通。借助火山熔岩喷发、岩浆冷凝堆积的自然原理,基于热敏树脂特殊的温敏流变性能,实现了“滞留温控闪凝”承压堵漏,解决了高角度大缝大洞发育储层恶性漏失的问题,提高了固井完井质量,结合人工举升控制生产压差,实现了有限厚度富集油的有效采出,坚定了古潜山发展注气重力驱的信心。Abstract: The Huabei Oilfield has performed enhanced oil recovery testing based on nitrogen injection gravity drainage in the buried hill oil reservoir since the 1990s. The pattern composed of the gas cap, oil-enriched zone and bottom water was formed. The existing wells were used for production, in which pay zones were drilled-in and left openhole after the upper wellbore was cased. However, these wells presented only gas production, with no oil production, Given this, the investigation integrating oil reservoir engineering and production engineering was performed and the production engineering design idea combining isolation, control, and selective production was proposed. It is considered that the key to preventing gas and water from directly flowing into the wellbore is to overcome the effects of gravitational differentiation and density difference to facilitate effective containment, pressure-bearing, and plugging. Inspired by the natural process of lava eruption, cooling and accumulation, the pressure-bearable channel plugging technology of fluid retention and temperature-controlled fast setting was developed, with the help of the unique thermosensitive rheology of thermosensitive resins to overcome gravitational differentiation. Reservoirs developed high-angle large fractures and caverns suffer from severe leakoff, which impacts the quality of cementing and well completion. Yet, the presented technology overcomes such challenges. Moreover, the presented technology combined with the control of drawdown pressure during artificial lifting realizes effective recovery of enriched oil zones with limited thickness. The application performance of this technology strengthens the confidence in applying gas injection gravity drainage in buried hill reservoirs.
-
表 1 Y340井气柱段承压堵漏效果
Table 1. Performance of pressure-bearable channel plugging of the gas column interval of Well Y340
堵漏工艺 裸眼留塞/m 吸水量/(m3 · h-1) 循环漏失量/(m3 · h-1) 堵后承压/MPa 堵前 堵后 堵前 堵后 常规堵漏 21.69 36.4 21 30.8 7.2 驻留温控闪凝 32.96 18 0 6.5 0 15 -
[1] ZHAO X Z, JIN F M, WANG Q, et al. Buried-hill play, Jizhong subbasin, Bohai Bay basin: A review and future prospectivity[J]. AAPG Bulletin, 2015, 99(1): 1-26. doi: 10.1306/07171413176 [2] 白凤瀚, 申友青, 孟庆春, 等. 雁翎油田注氮气提高采收率现场试验[J]. 石油学报, 1998, 19(4):61-68. doi: 10.3321/j.issn:0253-2697.1998.04.011 BAI Fenghan, SHEN Youqing, MENG Qingchun, et al. Reservoir engineering research of the nitrogen injection pilot in Yanling oil field[J]. Acta Petrolei Sinica, 1998, 19(4): 61-68. doi: 10.3321/j.issn:0253-2697.1998.04.011 [3] 黄代国. 雁翎油田注氮气增产机理的实验评价[J]. 石油学报, 1992, 13(4):67-75. doi: 10.7623/syxb199204008 HUANG Daiguo. Laboratory evaluation of the mechanism of the increased oil recovery with nitrogen injection for Yanling oilfield[J]. Acta Petrolei Sinica, 1992, 13(4): 67-75. doi: 10.7623/syxb199204008 [4] 秦义, 李秋颖, 高鹏, 等. 雁翎潜山油藏注氮气重力驱控气采油工艺[J]. 石油钻采工艺, 2020, 42(1):93-97. doi: 10.13639/j.odpt.2020.01.015 QIN Yi, LI Qiuying, GAO Peng, et al. The gas control and oil production technology based on gravity drive of nitrogen injection in the Yanling buried-hill oil reservoir[J]. Oil Drilling & Production Technology, 2020, 42(1): 93-97. doi: 10.13639/j.odpt.2020.01.015 [5] 王秀影, 胡书宝, 秦义, 等. 雁翎潜山注气重力驱钻完井难点与对策[J]. 断块油气田, 2017, 24(4):592-595. doi: 10.6056/dkyqt201704034 WANG Xiuying, HU Shubao, QIN Yi, et al. Drilling and completion difficulties and solutions for gas assistant gravity driven development of Yanling buried-hill[J]. Fault-Block Oil and Gas Field, 2017, 24(4): 592-595. doi: 10.6056/dkyqt201704034 [6] 徐樟有, 熊琦华, 张继春. 雁翎油田雾迷山组潜山油藏剩余油分布与预测[J]. 石油勘探与开发, 1997, 24(5):83-85,124. doi: 10.3321/j.issn:1000-0747.1997.05.020 XU Zhangyou, XIONG Qihua, ZHANG Jichun. Distribution and prediction for remaining oil in buried hill reservoir of Yanling oil field[J]. Petroleum Exploration and Development, 1997, 24(5): 83-85,124. doi: 10.3321/j.issn:1000-0747.1997.05.020 [7] 巨登峰, 张克永, 张双艳. 华北油田裂缝性油藏的堵水实践[J]. 断块油气田, 2001, 8(6):39-42. doi: 10.3969/j.issn.1005-8907.2001.06.012 JU Dengfeng, ZHANG Keyong, ZHANG Shuangyan. The water shutoff practice on fractured reservoirs in huabei oilfield[J]. Fault-Block Oil and Gas Field, 2001, 8(6): 39-42. doi: 10.3969/j.issn.1005-8907.2001.06.012 [8] 赵福祥, 孟庆立, 王静, 等. 冀中坳陷深潜山内幕井防漏、防塌钻井技术[J]. 石油钻采工艺, 2009, 31(增刊2):13-18. doi: 10.3969/j.issn.1000-7393.2009.z2.004 ZHAO Fuxiang, MENG Qingli, WANG Jing, et al. Hole sloughing prevention and antileakage drilling technology in deep buried hill inside well drilling in Jizhong depression of Huabei Oilfield[J]. Oil Drilling & Production Technology, 2009, 31(S2): 13-18. doi: 10.3969/j.issn.1000-7393.2009.z2.004 [9] 尹爱华, 张以明, 徐明磊, 等. 华北油田深潜山欠平衡钻井技术[J]. 石油钻采工艺, 2009, 31(增刊2):6-8. doi: 10.3969/j.issn.1000-7393.2009.z2.002 YIN Aihua, ZHANG Yiming, XU Minglei, et al. Underbalanced drilling techniques in deep buried hill reservoirs in Huabei Oilfield[J]. Oil Drilling & Production Technology, 2009, 31(S2): 6-8. doi: 10.3969/j.issn.1000-7393.2009.z2.002 [10] SUZUKI M, OSHIMA T. Estimation of the co-ordination numbers in a multi-component mixture of spheres[J]. Powder Technology, 1983, 35(2): 159-166. doi: 10.1016/0032-5910(83)87004-1 [11] MORITA N, BLACK A D, FUN G F. Theory of lost circulation pressure[C]//Paper presented at the SPE Annual Technical Conference and Exhibition, September 1990, New Orleans, Louisiana: SPE-20409-MS. [12] 郑力会, 张明伟. 封堵技术基础理论回顾与展望[J]. 石油钻采工艺, 2012, 34(5):1-9. doi: 10.3969/j.issn.1000-7393.2012.05.001 ZHENG Lihui, ZHANG Mingwei. Review of basic theory for lost circulation control[J]. Oil Drilling & Production Technology, 2012, 34(5): 1-9. doi: 10.3969/j.issn.1000-7393.2012.05.001 [13] 康毅力, 许成元, 唐龙, 等. 构筑井周坚韧屏障: 井漏控制理论与方法[J]. 石油勘探与开发, 2014, 41(4):473-479. doi: 10.11698/PED.2014.04.13 KANG Yili, XU Chengyuan, TANG Long, et al. Constructing a tough shield around the wellbore: Theory and method for lost-circulation control[J]. Petroleum Exploration and Development, 2014, 41(4): 473-479. doi: 10.11698/PED.2014.04.13 [14] SUDDUTH R D. Theoretical development of a graphical analysis technique to optimize the particle size distribution of pigments in paints and coatings[J]. Journal of Coatings Technology, 2003, 75(940): 9-15. doi: 10.1007/BF02720512 [15] 邱正松, 刘均一, 周宝义, 等. 钻井液致密承压封堵裂缝机理与优化设计[J]. 石油学报, 2016, 37(增刊2):137-143. doi: 10.7623/syxb2016S2017 QIU Zhengsong, LIU Junyi, ZHOU Baoyi, et al. Tight fracture-plugging mechanism and optimized design for plugging drilling fluid[J]. Acta Petrolei Sinica, 2016, 37(S2): 137-143. doi: 10.7623/syxb2016S2017 [16] 张长高. 水动力学[M]. 北京: 高等教育出版社, 1993. ZHANG Changgao. Hydrodynamics[M]. Beijing: Higher Education Press, 1993. [17] 许成元, 闫霄鹏, 康毅力, 等. 深层裂缝性储集层封堵层结构失稳机理与强化方法[J]. 石油勘探与开发, 2020, 47(2):399-408. doi: 10.11698/PED.2020.02.19 XU Chengyuan, YAN Xiaopeng, KANG Yili, et al. Structural failure mechanism and strengthening method of plugging zone in deed naturally fractured reservoirs[J]. Petroleum Exploration and Development, 2020, 47(2): 399-408. doi: 10.11698/PED.2020.02.19 [18] 中国石油天然气股份有限公司. 用于油水井套管修复的化学复合树脂封固剂: CN201110314478.8[P]. 2011-10-17. PetroChina Co., Ltd. Chemical composite resin sealant for casing repair of oil and water wells: CN201110314478.8[P]. 2011-10-17. [19] 李兆敏, 张丁涌, 衣怀峰, 等. 多元热流体在井筒中的流动与传热规律[J]. 中国石油大学学报(自然科学版), 2012, 36(6):79-83,88. doi: 10.3969/j.issn.1673-5005.2012.06.014 LI Zhaomin, ZHANG Dingyong, YI Huaifeng, et al. Flow and heat transfer regulation of multi-thermal fluids injection in wellbore[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(6): 79-83,88. doi: 10.3969/j.issn.1673-5005.2012.06.014 [20] 东晓虎, 刘慧卿, 侯吉瑞, 等. 非凝析气与蒸汽混注水平井井筒流动传热特征[J]. 中国石油大学学报(自然科学版), 2016, 40(2):105-114. doi: 10.3969/j.issn.1673-5005.2016.02.013 DONG Xiaohu, LIU Huiqing, HOU Jirui, et al. Transient fluid flow and heat transfer characteristics during co-injection of steam and non-condensable gases in horizontal wells[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(2): 105-114. doi: 10.3969/j.issn.1673-5005.2016.02.013 [21] 曾义金, 李大奇, 杨春和. 裂缝性地层防漏堵漏力学机制研究[J]. 岩石力学与工程学报, 2016, 35(10):2054-2061. doi: 10.13722/j.cnki.jrme.2015.1268 ZENG Yijin, LI Daqi, YANG Chunhe. Leakage prevention and control in fractured formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(10): 2054-2061. doi: 10.13722/j.cnki.jrme.2015.1268 [22] 李士伦, 郭平, 戴磊, 等. 发展注气提高采收率技术[J]. 西南石油学院学报, 2000, 22(3):41-45. doi: 10.3863/j.issn.1674-5086.2000.03.011 LI Shilun, GUO Ping, DAI Lei, et al. Streathen gas injection for enhanced oil recovery[J]. Journal of Southwest Petroleum Institute, 2000, 22(3): 41-45. doi: 10.3863/j.issn.1674-5086.2000.03.011 -