库车山前深层高温高压气井多封隔器分层压裂工艺

王克林 张波 李超 刘洪涛 何新兴 秦世勇 黄锟

王克林,张波,李超,刘洪涛,何新兴,秦世勇,黄锟. 库车山前深层高温高压气井多封隔器分层压裂工艺[J]. 石油钻采工艺,2021,43(2):239-243 doi:  10.13639/j.odpt.2021.02.016
引用本文: 王克林,张波,李超,刘洪涛,何新兴,秦世勇,黄锟. 库车山前深层高温高压气井多封隔器分层压裂工艺[J]. 石油钻采工艺,2021,43(2):239-243 doi:  10.13639/j.odpt.2021.02.016
WANG Kelin, ZHANG Bo, LI Chao, LIU Hongtao, HE Xinxing, QIN Shiyong, HUANG Kun. Multi-packer separate layer fracturing technology for deep, high temperature and high pressure gas wells in Kuqa piedmont[J]. Oil Drilling & Production Technology, 2021, 43(2): 239-243 doi:  10.13639/j.odpt.2021.02.016
Citation: WANG Kelin, ZHANG Bo, LI Chao, LIU Hongtao, HE Xinxing, QIN Shiyong, HUANG Kun. Multi-packer separate layer fracturing technology for deep, high temperature and high pressure gas wells in Kuqa piedmont[J]. Oil Drilling & Production Technology, 2021, 43(2): 239-243 doi:  10.13639/j.odpt.2021.02.016

库车山前深层高温高压气井多封隔器分层压裂工艺

doi: 10.13639/j.odpt.2021.02.016
基金项目: 国家科技重大专项“超深超高压高温气井优快建井与采气技术”(编号:2016ZX05051-003);中国石油天然气股份有限公司科技重大专项“超深高温高压气井井完整性及储层改造技术研究与应用”(编号:2018E-1809)
详细信息
    作者简介:

    王克林(1989-),2015年毕业于东北石油大学石油与天然气工程专业,主要从事油气井试油、完井研究工作,工程师。通讯地址:(841000)新疆库尔勒市石化大道26号。E-mail:wangkl-tlm@petrochina.com.cn

    通讯作者:

    刘洪涛(1983-),2006年毕业于西南石油大学石油工程专业,主要从事油气井试油、完井研究与管理工作,高级工程师。通讯地址:(841000)新疆库尔勒市石化大道26号。E-mail:liuhongtao-tlm@petrochina.com.cn

  • 中图分类号: TE357

Multi-packer separate layer fracturing technology for deep, high temperature and high pressure gas wells in Kuqa piedmont

  • 摘要: 库车山前区域深层高温高压低孔低渗气藏多封隔器分层压裂作业易发生封隔器失效、钢球堵塞管柱及射孔段下部替液不干净等问题,成为影响储层改造作业成功的关键问题。为解决上述问题,在完井管柱上加装了伸缩短节并延伸管柱至射孔段底界;研发了一种高强度铝合金可溶球,以三聚氰胺为过渡层的复合有机硅树脂涂层为其特殊保护膜,其承压强度在69 MPa以上且溶解速度先慢后快;研发了一种全通径压裂阀,采用棘爪式结构和投球打压方式,滑套打开侧孔时扩径通过球,使球移动至管柱底部,其通径可与下部封隔器保持一致,形成了适用于深层高温高压气井的多封隔器分层压裂工艺。现场累计应用14井次,未出现封隔器压裂时失效、管柱堵塞和替液不净等问题。分析表明:伸缩短节能够缓解温度效应和管内外压差产生的轴向力;可溶球满足压裂施工需求的同时,避免了滞留堵塞现象的出现;延伸管柱配合全通径压裂阀为射孔段替液和压裂液有效注入提供了通道,解决了射孔段钻井液沉淀堵塞和支撑剂沉积在井底的问题。多封隔器分层压裂工艺能够为深层高温高压气井储层压裂改造提供可靠技术支撑。
  • 图  1  优化后分层压裂完井管柱图

    Figure  1.  Optimized completion string of separate layer fracturing

    图  2  全通径压裂阀示意图

    Figure  2.  Full-bore fracturing valve

  • [1] 陈灿, 王栋, 扈殿奇, 等. 普光气田碳酸盐岩储层暂堵转向酸压技术[J]. 石油钻采工艺, 2019, 41(2):230-235.

    CHEN Can, WANG Dong, HU Dianqi, et al. Temporary plugging, diverting and acid fracturing technology used in carbonate reservoirs of Puguang Gasfield[J]. Oil Drilling & Production Technology, 2019, 41(2): 230-235.
    [2] 李永平, 程兴生, 张福祥, 等. 异常高压深井裂缝性厚层砂岩储层“酸化+酸压”技术[J]. 石油钻采工艺, 2010, 32(3):76-81. doi:  10.3969/j.issn.1000-7393.2010.03.018

    LI Yongping, CHENG Xingsheng, ZHANG Fuxiang, et al. Acid fracturing technology for thick fractured sandstone reservoir of deep wells with abnormal high pressure[J]. Oil Drilling & Production Technology, 2010, 32(3): 76-81. doi:  10.3969/j.issn.1000-7393.2010.03.018
    [3] 李平, 樊平天, 郝世彦, 等. 大液量大排量低砂比滑溜水分段压裂工艺应用实践[J]. 石油钻采工艺, 2019, 41(4):534-540.

    LI Ping, FAN Pingtian, HAO Shiyan, et al. Application practice of the slick-water staged fracturing of massive fluid, high displacement and low sand concentration[J]. Oil Drilling & Production Technology, 2019, 41(4): 534-540.
    [4] 许得禄, 魏拓, 张辞, 等. MaHW6004 井泵送桥塞射孔联作复杂情况处理[J]. 石油钻采工艺, 2018, 40(3):306-310.

    XU Delu, WEI Tuo, ZHANG Ci, et al. Complex case processing of pumping bridge plug and clustering perforation for the well MaHW6004[J]. Oil Drilling & Production Technology, 2018, 40(3): 306-310.
    [5] 白田增, 吴德, 康如坤, 等. 泵送式复合桥塞钻磨工艺研究与应用[J]. 石油钻采工艺, 2014, 36(1):123-125.

    BAI Tianzeng, WU De, KANG Rukun, et al. Research and application of drilling technique of pumping type composite bridge plug[J]. Oil Drilling & Production Technology, 2014, 36(1): 123-125.
    [6] 任勇, 叶登胜, 李剑秋, 等. 易钻桥塞射孔联作技术在水平井分段压裂中的实践[J]. 石油钻采工艺, 2013, 35(2):86-90. doi:  10.3969/j.issn.1000-7393.2013.02.025

    REN Yong, YE Dengsheng, LI Jianqiu, et al. Application of drillable bridge plug and clustering perforation in staged fracturing for horizontal well[J]. Oil Drilling & Production Technology, 2013, 35(2): 86-90. doi:  10.3969/j.issn.1000-7393.2013.02.025
    [7] 宋燕高, 林立世. 川西气田可钻桥塞分段压裂技术[J]. 油气井测试, 2015, 24(3):52-55. doi:  10.3969/j.issn.1004-4388.2015.03.015

    SONG Yan’gao, LIN Lishi. Staged fracturing technique of drillable bridge plug in west sichuan gas field[J]. Well Testing, 2015, 24(3): 52-55. doi:  10.3969/j.issn.1004-4388.2015.03.015
    [8] 水浩澈, 张付英 杨俊梅. 温度变化对压裂封隔器胶筒密封性能和疲劳寿命的影响研究[J]. 机械设计, 2020, 37(6):43-48.

    SHUI Haoche, ZHANG Fuying, YANG Junmei. Study on the influence of temperature changes exerted on the cracked packer rubber’s sealing performance and fatigue life[J]. Journal of Machine Design, 2020, 37(6): 43-48.
    [9] 刘江浩, 张毅. 高温高压大通径压裂封隔器的研制[J]. 钻采工艺, 2016, 39(3):77-79, 131. doi:  10.3969/J.ISSN.1006-768X.2016.03.24

    LIU Jianghao, Zhang Yi. Development of the large drift diameter fracture packer[J]. Drilling & Production Technology, 2016, 39(3): 77-79, 131. doi:  10.3969/J.ISSN.1006-768X.2016.03.24
    [10] ZHANG Fuxiang, DING Liangliang, YANG Xiangtong. Optimizations and tubular practice from integrated packer stress analyses during high rate, Multiple Acid Jobs in Low-Permeability, HPHT Reservoirs, China[C]. OTC 25679, 2015.
    [11] 胡素明, 王好, 肖香姣, 等. 迪那2气田测射联作完井工艺评价与优化[J]. 石油钻采工艺, 2017, 39(2):207-211.

    HU Suming, WANG Hao, XIAO Xiangjiao, et al. Evaluation and optimization on the well completion technology of combined testing and perforating in Di’na 2 Gasfield[J]. Oil Drilling & Production Technology, 2017, 39(2): 207-211.
    [12] 刘洪涛, 沈新普, 刘爽, 等. 高温高压气井多封隔器管柱完整性分析方法及应用实例[J]. 天然气工业, 2020, 40(7):83-89. doi:  10.3787/j.issn.1000-0976.2020.07.010

    LIU Hongtao, SHEN Xinpu, LIU Shuang, et al. Integrity analysis method of multi-packer string in HTHP gas wells and its application cases[J]. Natural Gas Industry, 2020, 40(7): 83-89. doi:  10.3787/j.issn.1000-0976.2020.07.010
    [13] 朱建锋, 赵旭, 卢博, 等. 一种以三聚氰胺为过渡层的复合有机硅树脂涂层的制备[P]. CN 108624192B, 2020-07-07.

    ZHU Jianfeng, ZHAO Xu, LU Bo, et al. A method to the preparation of a composite silicone resin coating with melamine as the transition layer[P]. CN 108624192B, 2020-07-07.
    [14] 朱进府. 一种全通径压裂阀[P]. CN 204140017U, 2015-02-04.

    ZHU Jinfu. A type of full-size fracturing valve[P]. CN 204140017U, 2015-02-04.
    [15] 张福祥, 丁亮亮, 杨向同. 高压深井分段改造管柱封隔器间压力预测及应用[J]. 天然气工业, 2015, 35(3):74-78. doi:  10.3787/j.issn.1000-0976.2015.03.011

    ZHANG Fuxiang, DING Liangliang, YANG Xiangtong. Prediction of pressure between packers of pipe strings for high-pressure deep-well staged stimulation and its application[J]. Natural gas industry, 2015, 35(3): 74-78. doi:  10.3787/j.issn.1000-0976.2015.03.011
  • [1] 贺甲元, 程洪, 向红, 翟晓鹏, 耿宇迪, 王海波.  塔河油田碳酸盐岩储层暂堵转向压裂排量优化 . 石油钻采工艺, 2021, 43(2): 233-238. doi: 10.13639/j.odpt.2021.02.015
    [2] 谭鹏, 何思龙, 李明印, 陈雪峰, 张景田, 马喜伟.  库车坳陷超深层复杂气田钻完井技术 . 石油钻采工艺, 2021, 43(5): 580-585. doi: 10.13639/j.odpt.2021.05.004
    [3] 王希友, 高浩宏, 张裕良, 谭杜娟, 周洪涛, 秦宇.  川南二叠系煤层气井防腐防垢工艺 . 石油钻采工艺, 2020, 42(5): 662-667. doi: 10.13639/j.odpt.2020.05.024
    [4] 翟晓鹏, 孟文波, 孔祥吉, 王尔钧, 黄熠, 楼一珊.  用离散颗粒流数值模拟方法预测气井金属网布筛管冲蚀寿命 . 石油钻采工艺, 2020, 42(5): 668-672. doi: 10.13639/j.odpt.2020.05.025
    [5] 马鸿彦, 郑邦贤, 陈景旺, 郭劲松, 宋晓健, 李和清.  杨税务潜山超深超高温井安全优快钻井技术 . 石油钻采工艺, 2020, 42(5): 573-577. doi: 10.13639/j.odpt.2020.05.008
    [6] 赵俊, 杨生文, 孙泽宁, 李宇, 张家富, 王相春.  苏里格深部煤系致密气储层绒囊流体控水压裂 . 石油钻采工艺, 2020, 42(5): 647-651. doi: 10.13639/j.odpt.2020.05.021
    [7] 胡志强, 路保平, 侯绪田, 杨进, 杨顺辉, 何汉平.  深层气井油套环空泄漏点关键参数地面诊断技术 . 石油钻采工艺, 2020, 42(5): 632-636. doi: 10.13639/j.odpt.2020.05.018
    [8] 钟森, 谭明文, 赵祚培, 林立世.  永川深层页岩气藏水平井体积压裂技术 . 石油钻采工艺, 2019, 41(4): 529-533. doi: 10.13639/j.odpt.2019.04.020
    [9] 李宪文, 周文军, 黄占盈, 吴学升, 张燕娜.  苏里格气田分层压裂段固井水泥浆体系的研究与应用 . 石油钻采工艺, 2013, 35(4): 51-54.
    [10] 詹鸿运, 程智远, 刘志斌, 韩永亮, 郑峰, 于琛.  新型气井三层分压合采无阻生产压裂管柱   . 石油钻采工艺, 2012, 34(6): 82-84.
    [11] 卢修峰, 邱敏, 韩东, 夏志学, 黄坚毅, 邢丽洁.  低渗透薄互层多级分压简捷工艺 . 石油钻采工艺, 2011, 33(3): 113-115.
    [12] 白建文, 胡子见, 侯东红, 李义军, 赵占良, 朱李安.  新型TAP完井多级分层压裂工艺在低渗气藏的应用 . 石油钻采工艺, 2010, 32(4): 51-53.
    [13] 安耀清, 金建国, 董玉玲, 祁传国, 郑波, 张书荣.  小井眼及套变井压裂工艺研究与应用 . 石油钻采工艺, 2009, 31(5): 119-123.
    [14] 郑云川, 杨南鹏, 蒋玲玲, 陶建林, 沈建国, 张本全.  苏里格气田加砂压裂优化技术 . 石油钻采工艺, 2009, 31(5): 112-115.
    [15] 蒋廷学, 李治平, 才博, 王欣, 舒玉华, .  松辽盆地南部致密气藏低伤害大型压裂改造技术研究与试验 . 石油钻采工艺, 2009, 31(4): 6-11.
    [16] 谭玮, 王兴文, 任山.  分压排量控制技术在川西气田的应用 . 石油钻采工艺, 2007, 29(4): 59-60,63. doi: 10.3969/j.issn.1000-7393.2007.04.017
    [17] 邹远北, 周隆斌, 裴春, 李锋, 夏湘英, 王在东.  高温深层缓速酸化优化研究及应用 . 石油钻采工艺, 2003, 25(4): 61-63. doi: 10.3969/j.issn.1000-7393.2003.04.020
    [18] 窦益华, 樊正祥, 郑跃辉, 王峰.  用遗传积分法计算蠕变地层中套管的围压 . 石油钻采工艺, 1996, 18(4): 5-7,14. doi: 10.3969/j.issn.1000-7393.1996.04.002
    [19] 卢修峰, 刘凤琴.  投球分压的理论验证及实例分析 . 石油钻采工艺, 1994, 16(3): 57-62. doi: 10.3969/j.issn.1000-7393.1994.03.012
    [20] 卢修峰, 刘凤琴.  一种新型的液体分层压裂工艺 . 石油钻采工艺, 1993, 15(5): 66-71. doi: 10.3969/j.issn.1000-7393.1993.05.014
  • 加载中
图(2)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  624
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 修回日期:  2021-01-10
  • 网络出版日期:  2021-06-21
  • 刊出日期:  2021-06-21

库车山前深层高温高压气井多封隔器分层压裂工艺

doi: 10.13639/j.odpt.2021.02.016
    基金项目:  国家科技重大专项“超深超高压高温气井优快建井与采气技术”(编号:2016ZX05051-003);中国石油天然气股份有限公司科技重大专项“超深高温高压气井井完整性及储层改造技术研究与应用”(编号:2018E-1809)
    作者简介:

    王克林(1989-),2015年毕业于东北石油大学石油与天然气工程专业,主要从事油气井试油、完井研究工作,工程师。通讯地址:(841000)新疆库尔勒市石化大道26号。E-mail:wangkl-tlm@petrochina.com.cn

    通讯作者: 刘洪涛(1983-),2006年毕业于西南石油大学石油工程专业,主要从事油气井试油、完井研究与管理工作,高级工程师。通讯地址:(841000)新疆库尔勒市石化大道26号。E-mail:liuhongtao-tlm@petrochina.com.cn
  • 中图分类号: TE357

摘要: 库车山前区域深层高温高压低孔低渗气藏多封隔器分层压裂作业易发生封隔器失效、钢球堵塞管柱及射孔段下部替液不干净等问题,成为影响储层改造作业成功的关键问题。为解决上述问题,在完井管柱上加装了伸缩短节并延伸管柱至射孔段底界;研发了一种高强度铝合金可溶球,以三聚氰胺为过渡层的复合有机硅树脂涂层为其特殊保护膜,其承压强度在69 MPa以上且溶解速度先慢后快;研发了一种全通径压裂阀,采用棘爪式结构和投球打压方式,滑套打开侧孔时扩径通过球,使球移动至管柱底部,其通径可与下部封隔器保持一致,形成了适用于深层高温高压气井的多封隔器分层压裂工艺。现场累计应用14井次,未出现封隔器压裂时失效、管柱堵塞和替液不净等问题。分析表明:伸缩短节能够缓解温度效应和管内外压差产生的轴向力;可溶球满足压裂施工需求的同时,避免了滞留堵塞现象的出现;延伸管柱配合全通径压裂阀为射孔段替液和压裂液有效注入提供了通道,解决了射孔段钻井液沉淀堵塞和支撑剂沉积在井底的问题。多封隔器分层压裂工艺能够为深层高温高压气井储层压裂改造提供可靠技术支撑。

English Abstract

王克林,张波,李超,刘洪涛,何新兴,秦世勇,黄锟. 库车山前深层高温高压气井多封隔器分层压裂工艺[J]. 石油钻采工艺,2021,43(2):239-243 doi:  10.13639/j.odpt.2021.02.016
引用本文: 王克林,张波,李超,刘洪涛,何新兴,秦世勇,黄锟. 库车山前深层高温高压气井多封隔器分层压裂工艺[J]. 石油钻采工艺,2021,43(2):239-243 doi:  10.13639/j.odpt.2021.02.016
WANG Kelin, ZHANG Bo, LI Chao, LIU Hongtao, HE Xinxing, QIN Shiyong, HUANG Kun. Multi-packer separate layer fracturing technology for deep, high temperature and high pressure gas wells in Kuqa piedmont[J]. Oil Drilling & Production Technology, 2021, 43(2): 239-243 doi:  10.13639/j.odpt.2021.02.016
Citation: WANG Kelin, ZHANG Bo, LI Chao, LIU Hongtao, HE Xinxing, QIN Shiyong, HUANG Kun. Multi-packer separate layer fracturing technology for deep, high temperature and high pressure gas wells in Kuqa piedmont[J]. Oil Drilling & Production Technology, 2021, 43(2): 239-243 doi:  10.13639/j.odpt.2021.02.016
  • 塔里木盆地库车山前区域是国内深层天然气主要富集区域之一,其储层孔隙度为4%~8%、渗透率为(0.01~0.5)×10−3 μm2,最高温度和压力可达188 ℃、136 MPa,具有高温高压和低孔低渗特征,因此需要通过实施储层改造来提高单井产量。暂堵分层、桥塞分段和多封隔器分层是储层压裂改造的常用工艺措施[1-3]。暂堵分层压裂效果受限于储层应力差,当应力差大于6 MPa或小于3 MPa的储层,暂堵转向效果差。桥塞分段压裂在页岩气开发中应用广泛,但桥塞钻磨作业过程中井口压力需保持30 MPa以下,而库车山前压裂井的停泵压力普遍在40 MPa以上,不适用于深层高温高压气藏储层改造[4-7]。因此,多封隔器分层成为库车山前区域高温高压气藏分层压裂改造的必然选择。然而,受井筒温度压力[8]、温压效应[9-10]和完井管柱结构[11]的影响,多封隔器分层压裂工艺在高温高压气井中容易出现封隔器失效、钢球滞留及钻井液返排不充分堵塞管柱等问题,库车山前区域的现场应用也证实了上述问题[12],严重影响了分层压裂的实施效果以及后期资料录取。为解决上述问题,从完井管柱、投球性质和全通径压裂阀结构三方面入手,改善了压裂过程中封隔器受力情况,增加了管柱通径,解决了滞留投球堵塞管柱的问题,提高了井筒替液效率,取得了良好的应用效果。

    • 前期压裂作业过程中,过大的轴向载荷导致封隔器失效,且完井管柱管鞋一般下入射孔段顶界或中部位置,无法把射孔段中下部的压井钻井液替出,导致压井钻井液出现沉淀,影响有效射孔厚度和压裂施工作业。基于此,对管柱结构进行了优化,如图1所示。

      图  1  优化后分层压裂完井管柱图

      Figure 1.  Optimized completion string of separate layer fracturing

      首先,在封隔器之间设置了伸缩短节。通过控制伸缩短节销钉的数量来确保伸缩短节在压裂作业前处于闭合状态,在压裂作业时,伸缩短节处于拉开状态,从而避免压裂时封隔器之间轴向力过大,造成封隔器失效。

      其次,采用大尺寸封隔器与小尺寸封隔器组合提高管柱下入能力,规避多个封隔器在小尺寸尾管中下入遇阻的现象,形成了Ø177.8 mm+Ø127.0 mm (悬挂)和Ø206.38 mm+Ø139.7 mm (悬挂)套管柱封隔器组合方式。

      第三,延伸完井管柱管鞋到射孔段底界,在完井管柱对应射孔段顶界位置设置全通径压裂阀,形成大加小封隔器分层压裂完井管柱,管柱通径变大,从而替出射孔段试油钻井液,为后期施工提供有利通道,形成了2种改进的分层压裂完井管柱。

      (1) Ø206.38 mm+Ø139.7 mm复合套管井:油管挂+Ø114.3 mm气密封扣油管+Ø114.3 mm上提升短节+Ø114.3 mm上流量短节+Ø101.6 mm安全阀+Ø114.3 mm下流量短节+Ø114.3 mm下提升短节+Ø114.3 mm气密封扣油管+变扣+Ø88.9 mm气密封扣油管+Y443-162永久式封隔器+Ø88.9 mm气密封扣油管+Ø88.9 mm伸缩管+Ø88.9 mm分层压裂阀+ Y443-111永久式封隔器+Ø88.9 mm全通径压裂阀+变扣+Ø73.02 mm气密封扣油管+Ø73.02 mm球座。

      (2) Ø177.8 mm+Ø127.0 mm复合套管井:油管挂+Ø114.3 mm气密封扣油管+Ø114.3 mm上提升短节+Ø114.3 mm上流量短节+Ø101.6 mm安全阀+Ø114.3 mm下流量短节+Ø114.3 mm下提升短节+Ø114.3 mm气密封扣油管+变扣+Ø88.9 mm气密封扣油管+ Y443-139永久式封隔器+Ø88.9 mm气密封扣油管+Ø88.9 mm伸缩管+Ø88.9 mm+变扣+Ø73.02 mm气密封扣油管+Ø73.02 mm分层压裂阀+ Y443-101永久式封隔器+Ø73.02 mm全通径压裂阀+Ø73.02 mm气密封扣油管+Ø73.02 mm球座。

    • 前期采用钢球进行投球作业,钢球密度大,遇到低产井或遇卡后返排难度大,堵塞生产通道,影响后期生产和井筒作业。为此研发了高强度铝合金可溶球,表面涂有以三聚氰胺为过渡层的复合有机硅树脂涂层[13]保护膜,可溶球保护膜与溶液接触时,溶解速度慢,保护膜溶解完后,本体与溶液接触,本体材料比保护膜溶解快,溶解速度加快。

      可溶球保护膜能够确保溶解速度先慢后快。在“助排剂+1.0%破乳剂+0.2%交联调节剂+5%甲醇+水”介质中时,可溶球在60 ℃压裂液中溶解10 h,其外径由63.5 mm变为63 mm。实验介质为1.2%氯化钾时,氯离子含量5 500~6 000 mg/L,在70 ℃ 条件下,22 h后可溶球外径由63 mm变为51 mm,48 h后外径为32 mm,72 h后全部溶解完。

    • 前期完井管柱管鞋下至射孔顶界或中部,造成钻井液及支撑剂易沉积在井底替不出;优化完井管柱将管鞋延伸至射孔段底界为替液通道,射孔顶界下入压裂阀作为压裂通道;传统分层压裂阀的滑套下端设计弹性爪固定滑套,投球打压打开使滑套下移到设计位置,下端弹性爪弹开对滑套固定,同时滑套和外筒的椭圆孔对正,滑套内外连通,钢球落入球座上,后期需要返排出来。为此,研发一种全通径压裂阀[14],从而达到压裂时对准储层和井筒疏通时采用大尺寸管柱目的。

      全通径压裂阀采用棘爪式结构和投球打压方式,可在滑套打开侧孔时扩径通过球,使球移动至管柱底部,不影响管柱的其他作业,通径达到与封隔器相同,承压能力及性能指标与传统分层压裂滑套相同,见图2

      图  2  全通径压裂阀示意图

      Figure 2.  Full-bore fracturing valve

    • 2010—2013年,库车山前区域进行了9井次多封隔器机械分层压裂作业,出现了封隔器失效、钢球返排不出、替液不干净及管柱堵塞等问题。2019—2020年优化后的多封隔器分层压裂工艺在库车山前博孜、克深等区域高压气井累计应用14井次,未出现上述问题,改造后平均单井产量提高5.1倍。

      以KS1井为例,该井完钻井深/垂深7060.0 m/6398.4 m,采用优化后的分层压裂工艺进行多封隔器分层压裂。在最高排量6.55 m3/min、最高泵压118.5 MPa情况下,未出现管柱堵塞现象,封隔器坐封效果良好。压裂结束后用Ø9 mm油嘴放喷求产,无阻流量由压裂前的30×104 m3/d增至压裂后的250×104 m3/d,提产效果显著。

    • 2012年,库车山前某井下部层段酸压快结束时,套压突升、油压突降,判断油套窜通,修井作业中发现封隔器芯轴被拉断。计算发现[15],压裂过程中封隔器受到的轴向载荷由140 kN提高至405 kN,是导致封隔器失效的主要原因。KS1井加装伸缩短节后,力学计算结果显示在低挤、压裂、生产工况下封隔器受力均处于安全范围内,很好地缓解了轴向载荷,现场作业未再出现封隔器失效现象。

    • 钢球返排不出严重增加井筒油气的流动阻力,堵塞生产通道,影响后期生产和井筒作业,造成上述问题的主要原因为:地层流体无法推动钢球向上运动至井口;钢球被地层返出的砂或其他岩屑堆积卡死在管柱内;液体返排速度小使钢球在压裂后由于塑性变形卡死在球座上。

      可溶球在压裂液中承压能力仍保持在69 MPa以上,持续时间达4 h。库车山前高温高压气井压裂期间井底温度70 ℃左右,压裂施工时间为3 h左右,耐压差50 MPa,因此,可溶球强度能够满足前期压裂施工要求。根据溶解速度先慢后快的特性,滞留井筒内的可溶球,在较短时间内即可溶解。可溶球投入现场应用后,未再出现管柱堵塞问题。

    • 库车山前试油压井钻井液一般采用油基、水基或超微重晶石体系,密度1.75~2.25 g/cm3,分层压裂完井管柱下到预定位置后换装井口,再用完井液低排量反替出压井钻井液。前期分层压裂完井管柱结构:Ø206.38 mm套管+Ø139.7 mm套管井常用Y443-111永久式封隔器多封隔器分层,封隔器最小内径58.62 mm,配置的最大压裂阀内径52mm;Ø177.8 mm套管+Ø127.0 mm套管井采用Y443-101永久式封隔器多封隔器分层,封隔器最小内径为48.51 mm,配置的最大压裂阀内径42 mm。管鞋下至产层中部或顶部。

      优化前分层压裂管柱不利于后期连续油管井筒疏通等作业,优化后分层压裂完井管柱Ø206.38 mm套管+Ø139.7 mm套管井采用Y443-162+Y443-111永久式封隔器多封隔器分层,封隔器最小内径58.62 mm,配置的最大压裂阀内径60 mm;Ø177.8 mm套管+Ø127.0 mm套管井采用Y443-139+Y443-101永久式封隔器多封隔器分层,封隔器最小内径48.51 mm,配置的最大压裂阀内径60 mm。优化后的分层压裂管柱,管鞋延伸至射孔段底界,在压裂作业时通过投球打开全通径压裂阀的循环孔,压裂液和支撑剂可通过循环孔直接进入储层,解决管鞋下至射孔段底界带来的支撑剂易沉积在井底、循环摩阻大的问题。全通径压裂阀投球打开滑套后最大内径与封隔器内径一致,改进后的管柱井筒疏通能力增强了,为压裂液注入和后期井筒作业提供了良好的条件,在后期作业中应用效果良好。

    • (1)通过优化设计管柱安装伸缩短节、延伸管柱长度、研发可溶球、优选封隔器尺寸,并优化分层压裂阀结构,有效解决了库车山前区域高温高压气井多封隔器分段压裂封隔器失效、钢球堵塞管柱及射孔段下部替液不干净技术问题。

      (2)考虑到施工风险等因素,目前只能完成双封隔器分层压裂,应进一步优化封隔器性能及配套工艺以实现更多层数的压裂作业。

    • 感谢陕西科技大学对可溶球涂层制备提供的技术支持。

参考文献 (15)

目录

    /

    返回文章
    返回